Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117

Calculation of the free energy of association for protein complexes.

N Horton 1, M Lewis 1
PMCID: PMC2142085  PMID: 1339024

Abstract

We have developed a method for calculating the association energy of quaternary complexes starting from their atomic coordinates. The association energy is described as the sum of two solvation terms and an energy term to account for the loss of translational and rotational entropy. The calculated solvation energy, using atomic solvation parameters and the solvent accessible surface areas, has a correlation of 96% with experimentally determined values. We have applied this methodology to examine intermediates in viral assembly and to assess the contribution isomerization makes to the association energy of molecular complexes. In addition, we have shown that the calculated association can be used as a predictive tool for analyzing modeled molecular complexes.

Full Text

The Full Text of this article is available as a PDF (978.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascenzi P., Amiconi G., Menegatti E., Guarneri M., Bolognesi M., Schnebli H. P. Binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to human leukocyte elastase, bovine alpha-chymotrypsin and subtilisin Carlsberg: thermodynamic study. J Enzyme Inhib. 1988;2(3):167–172. doi: 10.3109/14756368809040723. [DOI] [PubMed] [Google Scholar]
  2. Ashmarina L. I., Muronetz V. I., Nagradova N. K. Evidence for a change in catalytic properties of glyceraldehyde 3-phosphate dehydrogenase monomers upon their association in a tetramer. FEBS Lett. 1982 Jul 19;144(1):43–46. doi: 10.1016/0014-5793(82)80565-6. [DOI] [PubMed] [Google Scholar]
  3. Azuma T., Kobayashi O., Goto Y., Hamaguchi K. Monomer-dimer equilibria of a Bence Jones protein and its variable fragment. J Biochem. 1978 May;83(5):1485–1492. doi: 10.1093/oxfordjournals.jbchem.a132058. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Cassman M., King R. C. Subunit interactions and ligand binding in supernatant malic dehydrogenase. Cooperative binding of reduced nicotinamide adenine dinucleotide associated with a monomer-dimer equilibrium of the protein. Biochemistry. 1972 Dec 19;11(26):4937–4944. doi: 10.1021/bi00776a010. [DOI] [PubMed] [Google Scholar]
  6. Chen Z., Bode W. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex. J Mol Biol. 1983 Feb 25;164(2):283–311. doi: 10.1016/0022-2836(83)90078-5. [DOI] [PubMed] [Google Scholar]
  7. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  8. Chothia C., Janin J. Principles of protein-protein recognition. Nature. 1975 Aug 28;256(5520):705–708. doi: 10.1038/256705a0. [DOI] [PubMed] [Google Scholar]
  9. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  10. Empie M. W., Laskowski M., Jr Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases. Biochemistry. 1982 May 11;21(10):2274–2284. doi: 10.1021/bi00539a002. [DOI] [PubMed] [Google Scholar]
  11. Erickson H. P. Co-operativity in protein-protein association. The structure and stability of the actin filament. J Mol Biol. 1989 Apr 5;206(3):465–474. doi: 10.1016/0022-2836(89)90494-4. [DOI] [PubMed] [Google Scholar]
  12. Erickson H. P., Pantaloni D. The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers. Biophys J. 1981 May;34(2):293–309. doi: 10.1016/S0006-3495(81)84850-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerschitz J., Rudolph R., Jaenicke R. Refolding and reactivation of liver alcohol dehydrogenase after dissociation and denaturation in 6M guanidine hydrochloride. Eur J Biochem. 1978 Jul 3;87(3):591–599. doi: 10.1111/j.1432-1033.1978.tb12411.x. [DOI] [PubMed] [Google Scholar]
  14. Hermann R., Rubolph R., Jaenicke R. Kinetics of in vitro reconstitution of oligomeric enzymes by cross-linking. Nature. 1979 Jan 18;277(5693):243–245. doi: 10.1038/277243a0. [DOI] [PubMed] [Google Scholar]
  15. Jaenicke R., Rudolph R. Refolding and association of oligomeric proteins. Methods Enzymol. 1986;131:218–250. doi: 10.1016/0076-6879(86)31043-7. [DOI] [PubMed] [Google Scholar]
  16. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  17. Komine S., Yoshida K., Yamashita H., Masaki Z. Voiding dysfunction in patients with human T-lymphotropic virus type-1-associated myelopathy (HAM). Paraplegia. 1989 Jun;27(3):217–221. doi: 10.1038/sc.1989.32. [DOI] [PubMed] [Google Scholar]
  18. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  19. Maeda H., Engel J., Schramm H. J. Kinetics of dimerization of the variable fragment of the Bence-Jones protein Au. Eur J Biochem. 1976 Oct 1;69(1):133–139. doi: 10.1111/j.1432-1033.1976.tb10866.x. [DOI] [PubMed] [Google Scholar]
  20. Markert C. L., Massaro E. J. Lactate dehydrogenase isozymes: dissociation and denaturation by dilution. Science. 1968 Nov 8;162(3854):695–697. doi: 10.1126/science.162.3854.695. [DOI] [PubMed] [Google Scholar]
  21. Ovádi J., Batke J., Bartha F., Keleti T. Effect of association-dissociation on the catalytic properties of glyceraldehyde 3-phosphate dehydrogenase. Arch Biochem Biophys. 1979 Mar;193(1):28–33. doi: 10.1016/0003-9861(79)90004-3. [DOI] [PubMed] [Google Scholar]
  22. Pekar A. H., Frank B. H. Conformation of proinsulin. A comparison of insulin and proinsulin self-association at neutral pH. Biochemistry. 1972 Oct 24;11(22):4013–4016. doi: 10.1021/bi00772a001. [DOI] [PubMed] [Google Scholar]
  23. Read R. J., Fujinaga M., Sielecki A. R., James M. N. Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8-A resolution. Biochemistry. 1983 Sep 13;22(19):4420–4433. doi: 10.1021/bi00288a012. [DOI] [PubMed] [Google Scholar]
  24. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  25. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  26. Ross P. D., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981 May 26;20(11):3096–3102. doi: 10.1021/bi00514a017. [DOI] [PubMed] [Google Scholar]
  27. Sharp K. A., Nicholls A., Fine R. F., Honig B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science. 1991 Apr 5;252(5002):106–109. doi: 10.1126/science.2011744. [DOI] [PubMed] [Google Scholar]
  28. Sorger P. K., Stockley P. G., Harrison S. C. Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. J Mol Biol. 1986 Oct 20;191(4):639–658. doi: 10.1016/0022-2836(86)90451-1. [DOI] [PubMed] [Google Scholar]
  29. Vincent J. P., Lazdunski M. Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges. Biochemistry. 1972 Aug 1;11(16):2967–2977. doi: 10.1021/bi00766a007. [DOI] [PubMed] [Google Scholar]
  30. Vincent J. P., Peron-Renner M., Pudles J., Lazdunski M. The association of anhydrotrypsin with the pancreatic trypsin inhibitors. Biochemistry. 1974 Sep 24;13(20):4205–4211. doi: 10.1021/bi00717a023. [DOI] [PubMed] [Google Scholar]
  31. Zabori S., Rudolph R., Jaenicke R. Folding and association of triose phosphate isomerase from rabbit muscle. Z Naturforsch C. 1980 Nov-Dec;35(11-12):999–1004. doi: 10.1515/znc-1980-11-1224. [DOI] [PubMed] [Google Scholar]
  32. Zettlmeissl G., Rudolph R., Jaenicke R. Rate-determining folding and association reactions on the reconstitution pathway of porcine skeletal muscle lactic dehydrogenase after denaturation by guanidine hydrochloride. Biochemistry. 1982 Aug 17;21(17):3946–3950. doi: 10.1021/bi00260a007. [DOI] [PubMed] [Google Scholar]

Articles from Protein science : a publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES