Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jan;1(1):145–150. doi: 10.1002/pro.5560010114

Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins.

M T Bihoreau 1, V Baudin 1, M Marden 1, N Lacaze 1, B Bohn 1, J Kister 1, O Schaad 1, A Dumoulin 1, S J Edelstein 1, C Poyart 1, et al.
PMCID: PMC2142087  PMID: 1363932

Abstract

Models for the structure of the fibers of deoxy sickle cell hemoglobin (Hb Hb S, beta 6 Glu-->Val) have been obtained from X-ray and electron microscopic studies. Recent molecular dynamics calculations of polymer formation give new insights on the various specific interactions between monomers. Site-directed mutagenesis with expression of the Hb S beta subunits in Escherichia coli provides the experimental tools to test these models. For Hb S, the beta 6 Val residue is intimately involved in a specific lateral contact, at the donor site, that interacts with the acceptor site of an adjacent molecule composed predominantly of the hydrophobic residues Phe 85 and Leu 88. Comparing natural and artificial mutants indicates that the solubility of deoxyHb decreases in relation to the surface hydrophobicity of the residue at the beta 6 position with Ile > Val > Ala. We also tested the role of the stereospecific adjustment between the donor and acceptor sites by substituting Trp for Glu at the beta 6 location. Among these hydrophobic substitutions and under our experimental conditions, only Val and Ile were observed to induce polymer formation. The interactions for the Ala mutant are too weak whereas a Trp residue inhibits aggregation through steric hindrance at the acceptor site of the lateral contact. Increasing the hydrophobicity at the axial contact between tetramers of the same strand also contributes to the stability of the double strand. This is demonstrated by associating the beta 23 Val-->Ile mutation at the axial contact with either the beta 6 Glu-->Val or beta 6 Glu-->Ile substitution in the same beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (624.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations. J Biol Chem. 1979 Aug 25;254(16):7765–7771. [PubMed] [Google Scholar]
  2. Adachi K., Matarasso S. L., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Effect of organic phosphates on the kinetics of aggregation of deoxyhemoglobin S in concentrated phosphate buffer. Biochim Biophys Acta. 1980 Aug 21;624(2):372–377. doi: 10.1016/0005-2795(80)90078-1. [DOI] [PubMed] [Google Scholar]
  3. Adachi K., Ozguc M., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin A in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer. J Biol Chem. 1980 Apr 10;255(7):3092–3099. [PubMed] [Google Scholar]
  4. Baudin-Chich V., Pagnier J., Marden M., Bohn B., Lacaze N., Kister J., Schaad O., Edelstein S. J., Poyart C. Enhanced polymerization of recombinant human deoxyhemoglobin beta 6 Glu----Ile. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1845–1849. doi: 10.1073/pnas.87.5.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackwell R. Q., Oemijati S., Pribadi W., Weng M. I., Liu C. S. Hemoglobin G Makassar: beta-6 Glu leads to Ala. Biochim Biophys Acta. 1970 Sep 29;214(3):396–401. [PubMed] [Google Scholar]
  6. Clegg J. B., Naughton M. A., Weatherball D. J. Abnormal human haemoglobins. Separation and characterization of the alpha and beta chains by chromatography, and the determination of two new variants, hb Chesapeak and hb J (Bangkok). J Mol Biol. 1966 Aug;19(1):91–108. doi: 10.1016/s0022-2836(66)80052-9. [DOI] [PubMed] [Google Scholar]
  7. Edelstein S. J. Molecular topology in crystals and fibers of hemoglobin S. J Mol Biol. 1981 Aug 25;150(4):557–575. doi: 10.1016/0022-2836(81)90381-8. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  9. Harano T., Harano K., Ueda S., Shibata S., Imai K., Seki M. Hemoglobin Machida [beta 6 (A3) Glu replaced by Gln], a new abnormal hemoglobin discovered in a Japanese family: structure, function and biosynthesis. Hemoglobin. 1982;6(5):531–535. doi: 10.3109/03630268209083766. [DOI] [PubMed] [Google Scholar]
  10. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  11. Kister J., Poyart C., Edelstein S. J. An expanded two-state allosteric model for interactions of human hemoglobin A with nonsaturating concentrations of 2,3-diphosphoglycerate. J Biol Chem. 1987 Sep 5;262(25):12085–12091. [PubMed] [Google Scholar]
  12. Kuczera K., Gao J., Tidor B., Karplus M. Free energy of sickling: A simulation analysis. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8481–8485. doi: 10.1073/pnas.87.21.8481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marden M. C., Kister J., Bohn B., Poyart C. T-state hemoglobin with four ligands bound. Biochemistry. 1988 Mar 8;27(5):1659–1664. doi: 10.1021/bi00405a041. [DOI] [PubMed] [Google Scholar]
  14. Monplaisir N., Merault G., Poyart C., Rhoda M. D., Craescu C., Vidaud M., Galacteros F., Blouquit Y., Rosa J. Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9363–9367. doi: 10.1073/pnas.83.24.9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  16. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  17. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Padlan E. A., Love W. E. Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution. J Biol Chem. 1985 Jul 15;260(14):8272–8279. doi: 10.2210/pdb1hbs/pdb. [DOI] [PubMed] [Google Scholar]
  19. Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
  20. Pagnier J., Baudin-Chich V., Lacaze N., Bohn B., Poyart C. Haemoglobin alpha 2 beta 2 23Val----Ile produced in Escherichia coli facilitates Hb S polymerization. Br J Haematol. 1990 Apr;74(4):531–534. doi: 10.1111/j.1365-2141.1990.tb06346.x. [DOI] [PubMed] [Google Scholar]
  21. Rodgers D. W., Crepeau R. H., Edelstein S. J. Pairings and polarities of the 14 strands in sickle cell hemoglobin fibers. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6157–6161. doi: 10.1073/pnas.84.17.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein science : a publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES