Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jan;1(1):120–131. doi: 10.1002/pro.5560010112

Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast.

G Kern 1, N Schülke 1, F X Schmid 1, R Jaenicke 1
PMCID: PMC2142089  PMID: 1304875

Abstract

The role of carbohydrate chains for the structure, function, stability, and folding of glycoproteins has been investigated using invertase as a model. The protein is encoded by several different genes, and its carbohydrate moiety is heterogeneous. Both properties complicate physicochemical comparisons. Here we used the temperature-sensitive sec18 secretion mutant of yeast with a single invertase gene (SUC2). This mutant produces the carbohydrate-free internal invertase, the core-glycosylated form, and, at the permissive temperature, the fully glycosylated external enzyme, all with identical protein moieties. The core-glycosylated enzyme resembles the nascent glycoprotein chain that folds in the endoplasmic reticulum. Therefore, it may be considered a model for the in vivo folding of glycoproteins. In addition, because of its uniform glycosylation, it can be used to investigate the state of association of native invertase. Glycosylation is found to stabilize the protein with respect to thermal denaturation and chaotropic solvent components; the stabilizing effect does not differ for the external and the core-glycosylated forms. Unlike the internal enzyme, the glycosylated forms are protected from aggregation. Native internal invertase is a dimer (115 kDa) whereas the core-glycosylated enzyme is a mixture of dimers, tetramers, and octamers. This implies that core-glycosylation is necessary for oligomerization to tetramers and octamers. Dimerization is required and sufficient to generate enzymatic activity; further association does not alter the specific activity of core-glycosylated invertase, suggesting that the active sites of invertase are not affected by the association of the dimeric units. Reconstitution of the glycosylated and nonglycosylated forms of the enzyme after preceding guanidine denaturation depends on protein concentration. The maximum yield (approximately 80%) is obtained at pH 6-8 and protein concentrations < or = 4 micrograms/mL for the nonglycosylated and < or = 40 for the glycosylated forms of the enzyme. The lower stability of the internal enzyme is reflected by a narrower pH range of reactivation and enhanced aggregation. As indicated by the sigmoidal reactivation kinetics at low protein concentration both folding and association are rate-determining.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chu F. K., Trimble R. B., Maley F. The effect of carbohydrate depletion on the properties of yeast external invertase. J Biol Chem. 1978 Dec 25;253(24):8691–8693. [PubMed] [Google Scholar]
  2. Fischer G., Schmid F. X. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry. 1990 Mar 6;29(9):2205–2212. doi: 10.1021/bi00461a001. [DOI] [PubMed] [Google Scholar]
  3. Gabriel O., Wang S. F. Determination of enzymatic activity in polyacrylamide gels. I. Enzymes catalyzing the conversion of nonreducing substrates to reducing products. Anal Biochem. 1969 Mar;27(3):545–554. doi: 10.1016/0003-2697(69)90068-2. [DOI] [PubMed] [Google Scholar]
  4. Gascón S., Neumann N. P., Lampen J. O. Comparative study of the properties of the purified internal and external invertases from yeast. J Biol Chem. 1968 Apr 10;243(7):1573–1577. [PubMed] [Google Scholar]
  5. Gibson R., Schlesinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J Biol Chem. 1979 May 10;254(9):3600–3607. [PubMed] [Google Scholar]
  6. Goldstein A., Lampen J. O. Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol. 1975;42:504–511. doi: 10.1016/0076-6879(75)42159-0. [DOI] [PubMed] [Google Scholar]
  7. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  8. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
  9. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  10. Manjunath P., Sairam M. R. Enhanced thermal stability of chemically deglycosylated human choriogonadotropin. J Biol Chem. 1983 Mar 25;258(6):3554–3558. [PubMed] [Google Scholar]
  11. Marshall R. D. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
  12. Marshall R. D. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp. 1974;(40):17–26. [PubMed] [Google Scholar]
  13. Neumann N. P., Lampen J. O. Purification and properties of yeast invertase. Biochemistry. 1967 Feb;6(2):468–475. doi: 10.1021/bi00854a015. [DOI] [PubMed] [Google Scholar]
  14. Nose M., Wigzell H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6632–6636. doi: 10.1073/pnas.80.21.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205–215. doi: 10.1016/0092-8674(80)90128-2. [DOI] [PubMed] [Google Scholar]
  16. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  17. Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
  18. Reddy A. V., MacColl R., Maley F. Effect of oligosaccharides and chloride on the oligomeric structures of external, internal, and deglycosylated invertase. Biochemistry. 1990 Mar 13;29(10):2482–2487. doi: 10.1021/bi00462a007. [DOI] [PubMed] [Google Scholar]
  19. Schülke N., Schmid F. X. The stability of yeast invertase is not significantly influenced by glycosylation. J Biol Chem. 1988 Jun 25;263(18):8827–8831. [PubMed] [Google Scholar]
  20. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  21. Taussig R., Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 1983 Mar 25;11(6):1943–1954. doi: 10.1093/nar/11.6.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trimble R. B., Maley F. The use of endo-beta-N-acetylglucosaminidase H in characterizing the structure and function of glycoproteins. Biochem Biophys Res Commun. 1977 Oct 10;78(3):935–944. doi: 10.1016/0006-291x(77)90512-5. [DOI] [PubMed] [Google Scholar]
  23. Williams R. S., Trumbly R. J., MacColl R., Trimble R. B., Maley F. Comparative properties of amplified external and internal invertase from the yeast SUC2 gene. J Biol Chem. 1985 Oct 25;260(24):13334–13341. [PubMed] [Google Scholar]
  24. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  25. Ziegler F. D., Maley F., Trimble R. B. Characterization of the glycosylation sites in yeast external invertase. II. Location of the endo-beta-N-acetylglucosaminidase H-resistant sequons. J Biol Chem. 1988 May 25;263(15):6986–6992. [PubMed] [Google Scholar]

Articles from Protein science : a publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES