Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jan;1(1):81–90. doi: 10.1002/pro.5560010109

The three-dimensional structure of the first EGF-like module of human factor IX: comparison with EGF and TGF-alpha.

M Baron 1, D G Norman 1, T S Harvey 1, P A Handford 1, M Mayhew 1, A G Tse 1, G G Brownlee 1, I D Campbell 1
PMCID: PMC2142090  PMID: 1304885

Abstract

The three-dimensional structure of the first epidermal growth factor (EGF)-like module from human factor IX has been determined in solution using two-dimensional nuclear magnetic resonance (in the absence of calcium and at pH 4.5). The structure was found to resemble closely that of EGF and the homologous transforming growth factor-alpha (TGF-alpha). Residues 60-65 form an antiparallel beta-sheet with residues 68-73. In the C-terminal subdomain a type II beta-turn is found between residues 74 and 77 and a five-residue turn is found between residues 79 and 83. Glu 78 and Leu 84 pair in an antiparallel beta-sheet conformation. In the N-terminal region a loop is found between residues 50 and 55 such that the side chains of both are positioned above the face of the beta-sheet. Residues 56-60 form a turn that leads into the first strand of the beta-sheet. Whereas the global fold closely resembles that of EGF, the N-terminal residues of the module (46-49) do not form a beta-strand but are ill-defined in the structure, probably due to the local flexibility of this region. The structure is discussed with reference to recent site-directed mutagenesis data, which have identified certain conserved residues as ligands for calcium.

Full Text

The Full Text of this article is available as a PDF (741.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M., Norman D. G., Campbell I. D. Protein modules. Trends Biochem Sci. 1991 Jan;16(1):13–17. doi: 10.1016/0968-0004(91)90009-k. [DOI] [PubMed] [Google Scholar]
  2. Campbell I. D., Cooke R. M., Baron M., Harvey T. S., Tappin M. J. The solution structures of epidermal growth factor and transforming growth factor alpha. Prog Growth Factor Res. 1989;1(1):13–22. doi: 10.1016/0955-2235(89)90038-0. [DOI] [PubMed] [Google Scholar]
  3. Cooke R. M., Tappin M. J., Campbell I. D., Kohda D., Miyake T., Fuwa T., Miyazawa T., Inagaki F. Nuclear-magnetic-resonance studies of human epidermal growth factor. Eur J Biochem. 1990 Nov 13;193(3):807–815. doi: 10.1111/j.1432-1033.1990.tb19404.x. [DOI] [PubMed] [Google Scholar]
  4. Cooke R. M., Wilkinson A. J., Baron M., Pastore A., Tappin M. J., Campbell I. D., Gregory H., Sheard B. The solution structure of human epidermal growth factor. 1987 May 28-Jun 3Nature. 327(6120):339–341. doi: 10.1038/327339a0. [DOI] [PubMed] [Google Scholar]
  5. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  6. Handford P. A., Baron M., Mayhew M., Willis A., Beesley T., Brownlee G. G., Campbell I. D. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J. 1990 Feb;9(2):475–480. doi: 10.1002/j.1460-2075.1990.tb08133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
  8. Harvey T. S., Wilkinson A. J., Tappin M. J., Cooke R. M., Campbell I. D. The solution structure of human transforming growth factor alpha. Eur J Biochem. 1991 Jun 15;198(3):555–562. doi: 10.1111/j.1432-1033.1991.tb16050.x. [DOI] [PubMed] [Google Scholar]
  9. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  10. Persson E., Selander M., Linse S., Drakenberg T., Ohlin A. K., Stenflo J. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J Biol Chem. 1989 Oct 5;264(28):16897–16904. [PubMed] [Google Scholar]
  11. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  12. Rees D. J., Jones I. M., Handford P. A., Walter S. J., Esnouf M. P., Smith K. J., Brownlee G. G. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J. 1988 Jul;7(7):2053–2061. doi: 10.1002/j.1460-2075.1988.tb03045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reid K. B., Day A. J. Structure-function relationships of the complement components. Immunol Today. 1989 Jun;10(6):177–180. doi: 10.1016/0167-5699(89)90317-4. [DOI] [PubMed] [Google Scholar]
  14. Scott J. Lipoprotein receptors. Unravelling atherosclerosis. Nature. 1989 Mar 9;338(6211):118–119. doi: 10.1038/338118a0. [DOI] [PubMed] [Google Scholar]
  15. Selander M., Persson E., Stenflo J., Drakenberg T. 1H NMR assignment and secondary structure of the Ca2(+)-free form of the amino-terminal epidermal growth factor like domain in coagulation factor X. Biochemistry. 1990 Sep 4;29(35):8111–8118. doi: 10.1021/bi00487a018. [DOI] [PubMed] [Google Scholar]
  16. Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
  17. Stenflo J., Suttie J. W. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem. 1977;46:157–172. doi: 10.1146/annurev.bi.46.070177.001105. [DOI] [PubMed] [Google Scholar]
  18. Wagner G., Braun W., Havel T. F., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987 Aug 5;196(3):611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  19. Wharton K. A., Johansen K. M., Xu T., Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985 Dec;43(3 Pt 2):567–581. doi: 10.1016/0092-8674(85)90229-6. [DOI] [PubMed] [Google Scholar]

Articles from Protein science : a publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES