Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Oct;1(10):1293–1297. doi: 10.1002/pro.5560011008

Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis.

M Claeyssens 1, B Henrissat 1
PMCID: PMC2142096  PMID: 1303748

Abstract

The specificities of 15 cellulolytic enzymes have been examined using chromophoric glycosides derived from D-glucose, cellobiose, higher cellooligosaccharides, lactose, D-xylose, and beta-(1,4)-xylobiose. Coinciding with a classification based on hydrophobic cluster analysis of amino acid sequences, six families each showing a characteristic specificity pattern were observed. Furthermore, in these cases where the anomeric forms of reaction products were determined, results seem to indicate conservation of intrinsic reaction mechanism (single or double displacement) within each family. On the other hand, the low molecular weight substrates do not discriminate exo- from endocellulases. This functional differentiation is speculated to originate from the presence, in exoenzymes, of a tunnel-shaped active site formed by extra loops in their structure.

Full Text

The Full Text of this article is available as a PDF (433.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barras F., Bortoli-German I., Bauzan M., Rouvier J., Gey C., Heyraud A., Henrissat B. Stereochemistry of the hydrolysis reaction catalyzed by endoglucanase Z from Erwinia chrysanthemi. FEBS Lett. 1992 Mar 30;300(2):145–148. doi: 10.1016/0014-5793(92)80183-h. [DOI] [PubMed] [Google Scholar]
  2. Bhat K. M., Hay A. J., Claeyssens M., Wood T. M. Study of the mode of action and site-specificity of the endo-(1----4)-beta-D-glucanases of the fungus Penicillium pinophilum with normal, 1-3H-labelled, reduced and chromogenic cello-oligosaccharides. Biochem J. 1990 Mar 1;266(2):371–378. doi: 10.1042/bj2660371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claeyssens M., Tomme P., Brewer C. F., Hehre E. J. Stereochemical course of hydrolysis and hydration reactions catalysed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 1990 Apr 9;263(1):89–92. doi: 10.1016/0014-5793(90)80712-r. [DOI] [PubMed] [Google Scholar]
  6. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  7. Gebler J., Gilkes N. R., Claeyssens M., Wilson D. B., Béguin P., Wakarchuk W. W., Kilburn D. G., Miller R. C., Jr, Warren R. A., Withers S. G. Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem. 1992 Jun 25;267(18):12559–12561. [PubMed] [Google Scholar]
  8. Gilkes N. R., Claeyssens M., Aebersold R., Henrissat B., Meinke A., Morrison H. D., Kilburn D. G., Warren R. A., Miller R. C., Jr Structural and functional relationships in two families of beta-1,4-glycanases. Eur J Biochem. 1991 Dec 5;202(2):367–377. doi: 10.1111/j.1432-1033.1991.tb16384.x. [DOI] [PubMed] [Google Scholar]
  9. Grépinet O., Chebrou M. C., Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol. 1988 Oct;170(10):4582–4588. doi: 10.1128/jb.170.10.4582-4588.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meinke A., Braun C., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J Bacteriol. 1991 Jan;173(1):308–314. doi: 10.1128/jb.173.1.308-314.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  12. Wilson D. B. Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol. 1992;12(1-2):45–63. doi: 10.3109/07388559209069187. [DOI] [PubMed] [Google Scholar]
  13. Withers S. G., Dombroski D., Berven L. A., Kilburn D. G., Miller R. C., Jr, Warren R. A., Gilkes N. R. Direct 1H n.m.r. determination of the stereochemical course of hydrolyses catalysed by glucanase components of the cellulase complex. Biochem Biophys Res Commun. 1986 Sep 14;139(2):487–494. doi: 10.1016/s0006-291x(86)80017-1. [DOI] [PubMed] [Google Scholar]
  14. Zvelebil M. J., Sternberg M. J. Analysis and prediction of the location of catalytic residues in enzymes. Protein Eng. 1988 Jul;2(2):127–138. doi: 10.1093/protein/2.2.127. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES