Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Nov;1(11):1413–1427. doi: 10.1002/pro.5560011103

Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 A resolution.

S T Rao 1, F Shaffie 1, C Yu 1, K A Satyshur 1, B J Stockman 1, J L Markley 1, M Sundarlingam 1
PMCID: PMC2142120  PMID: 1303762

Abstract

The structure of the long-chain flavodoxin from the photosynthetic cyanobacterium Anabaena 7120 has been determined at 2 A resolution by the molecular replacement method using the atomic coordinates of the long-chain flavodoxin from Anacystis nidulans. The structure of a third long-chain flavodoxin from Chondrus crispus has recently been reported. Crystals of oxidized A. 7120 flavodoxin belong to the monoclinic space group P2(1) with a = 48.0, b = 32.0, c = 51.6 A, and beta = 92 degrees, and one molecule in the asymmetric unit. The 2 A intensity data were collected with oscillation films at the CHESS synchrotron source and processed to yield 9,795 independent intensities with Rmerg of 0.07. Of these, 8,493 reflections had I > 2 sigma and were used in the analysis. The model obtained by molecular replacement was initially refined by simulated annealing using the XPLOR program. Repeated refitting into omit maps and several rounds of conjugate gradient refinement led to an R-value of 0.185 for a model containing atoms for protein residues 2-169, flavin mononucleotide (FMN), and 104 solvent molecules. The FMN shows many interactions with the protein with the isoalloxazine ring, ribityl sugar, and the 5'-phosphate. The flavin ring has its pyrimidine end buried into the protein, and the functional dimethyl benzene edge is accessible to solvent. The FMN interactions in all three long-chain structures are similar except for the O4' of the ribityl chain, which interacts with the hydroxyl group of Thr 88 side chain in A. 7120, while with a water molecule in the other two. The phosphate group interacts with the atoms of the 9-15 loop as well as with NE1 of Trp 57. The N5 atom of flavin interacts with the amide NH of Ile 59 in A. 7120, whereas in A. nidulans it interacts with the amide NH of Val 59 in a similar manner. In C. crispus flavodoxin, N5 forms a hydrogen bond with the side chain hydroxyl group of the equivalent Thr 58. The hydrogen bond distances to the backbone NH groups in the first two flavodoxins are 3.6 A and 3.5 A, respectively, whereas in the third flavodoxin the distance is 3.1 A, close to the normal value. Even though the hydrogen bond distances are long in the first two cases, still they might have significant energy because their microenvironment in the protein is not accessible to solvent.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Burnett R. M., Darling G. D., Kendall D. S., LeQuesne M. E., Mayhew S. G., Smith W. W., Ludwig M. L. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. J Biol Chem. 1974 Jul 25;249(14):4383–4392. [PubMed] [Google Scholar]
  3. Fukuyama K., Matsubara H., Rogers L. J. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. J Mol Biol. 1992 Jun 5;225(3):775–789. doi: 10.1016/0022-2836(92)90400-e. [DOI] [PubMed] [Google Scholar]
  4. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  5. Laudenbach D. E., Reith M. E., Straus N. A. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol. 1988 Jan;170(1):258–265. doi: 10.1128/jb.170.1.258-265.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Leonhardt K. G., Straus N. A. Sequence of the flavodoxin gene from Anabaena variabilis 7120. Nucleic Acids Res. 1989 Jun 12;17(11):4384–4384. doi: 10.1093/nar/17.11.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Paulsen K. E., Stankovich M. T., Stockman B. J., Markley J. L. Redox and spectral properties of flavodoxin from Anabaena 7120. Arch Biochem Biophys. 1990 Jul;280(1):68–73. doi: 10.1016/0003-9861(90)90519-5. [DOI] [PubMed] [Google Scholar]
  8. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  9. Simondsen R. P., Tollin G. Structure-function relations in flavodoxins. Mol Cell Biochem. 1980 Dec 10;33(1-2):13–24. doi: 10.1007/BF00224568. [DOI] [PubMed] [Google Scholar]
  10. Smith W. W., Burnett R. M., Darling G. D., Ludwig M. L. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. J Mol Biol. 1977 Nov 25;117(1):195–225. doi: 10.1016/0022-2836(77)90031-6. [DOI] [PubMed] [Google Scholar]
  11. Smith W. W., Pattridge K. A., Ludwig M. L., Petsko G. A., Tsernoglou D., Tanaka M., Yasunobu K. T. Structure of oxidized flavodoxin from Anacystis nidulans. J Mol Biol. 1983 Apr 25;165(4):737–753. doi: 10.1016/s0022-2836(83)80277-0. [DOI] [PubMed] [Google Scholar]
  12. Stockman B. J., Krezel A. M., Markley J. L., Leonhardt K. G., Straus N. A. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions. Biochemistry. 1990 Oct 16;29(41):9600–9609. doi: 10.1021/bi00493a014. [DOI] [PubMed] [Google Scholar]
  13. Sykes G. A., Rogers L. J. Redox potentials of algal and cyanobacterial flavodoxins. Biochem J. 1984 Feb 1;217(3):845–850. doi: 10.1042/bj2170845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wakabayashi S., Kimura T., Fukuyama K., Matsubara H., Rogers L. J. The amino acid sequence of a flavodoxin from the eukaryotic red alga Chondrus crispus. Biochem J. 1989 Nov 1;263(3):981–984. doi: 10.1042/bj2630981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Watt W., Tulinsky A., Swenson R. P., Watenpaugh K. D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol. 1991 Mar 5;218(1):195–208. doi: 10.1016/0022-2836(91)90884-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES