Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Dec;1(12):1652–1660. doi: 10.1002/pro.5560011213

Escherichia coli K12 arabinose-binding protein mutants with altered transport properties.

D G Kehres 1, R W Hogg 1
PMCID: PMC2142127  PMID: 1304895

Abstract

The arabinose-binding protein (ABP) of Escherichia coli binds L-arabinose in the periplasm and delivers it to a cytoplasmic membrane complex consisting of the AraG and AraH proteins, for uptake into the cell. To study the interaction between the soluble and membrane components of this periplasmic transport system, regions of the ABP surface containing the opening of the arabinose-binding cleft were subjected to site-directed mutagenesis. Thirty-eight ABP variants containing one to three amino acid substitutions were recovered. ABP variants were expressed with wild-type AraG and AraH from a plasmid, in a strain lacking the chromosomal araFGH operon, and the whole cell uptake parameters, Ven (maximum initial velocity of arabinose entry) and K(en) (concentration of arabinose yielding half-maximal entry) were determined. Twenty-four mutants had normal Ven values, 3 mutants had Ven and K(en) values twice wild type, and 11 mutants had Ven and K(en) values 20-50% of wild type. Binding proteins that had altered uptake properties were each expressed, processed, and localized to the periplasm at levels equivalent to wild type. The mutant binding proteins behaved the same as wild type during purification, and each had a Kd (dissociation constant for bound arabinose) comparable to that of wild-type ABP. Mutations that resulted in altered uptake identified nine amino acids surrounding the arabinose-binding cleft, all of which are charged in the wild-type protein, and all of whose side chains project outward from the cleft. The evidence suggests that this surface of the binding protein and these nine charged loci play a major role in ABP interactions with the membrane complex.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Joshi A. K. Energy coupling in bacterial periplasmic permeases. J Bacteriol. 1990 Aug;172(8):4133–4137. doi: 10.1128/jb.172.8.4133-4137.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  4. Hogg R. W. L-Arabinose transport and the L-arabinose binding protein of Escherichia coli. J Supramol Struct. 1977;6(3):411–417. doi: 10.1002/jss.400060314. [DOI] [PubMed] [Google Scholar]
  5. Hogg R. W. L-Arabinose- and D-galactose-binding proteins from Escherichia coli. Methods Enzymol. 1982;90(Pt E):463–467. doi: 10.1016/s0076-6879(82)90172-0. [DOI] [PubMed] [Google Scholar]
  6. Horazdovsky B. F., Hogg R. W. High-affinity L-arabinose transport operon. Gene product expression and mRNAs. J Mol Biol. 1987 Sep 5;197(1):27–35. doi: 10.1016/0022-2836(87)90606-1. [DOI] [PubMed] [Google Scholar]
  7. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  8. Kang C. H., Shin W. C., Yamagata Y., Gokcen S., Ames G. F., Kim S. H. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem. 1991 Dec 15;266(35):23893–23899. [PubMed] [Google Scholar]
  9. Kehres D. G. A kinetic model for binding protein-mediated arabinose transport. Protein Sci. 1992 Dec;1(12):1661–1665. doi: 10.1002/pro.5560011214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Manson M. D., Boos W., Bassford P. J., Jr, Rasmussen B. A. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem. 1985 Aug 15;260(17):9727–9733. [PubMed] [Google Scholar]
  13. Mao B., Pear M. R., McCammon J. A., Quiocho F. A. Hinge-bending in L-arabinose-binding protein. The "Venus's-flytrap" model. J Biol Chem. 1982 Feb 10;257(3):1131–1133. [PubMed] [Google Scholar]
  14. Noel D., Nikaido K., Ames G. F. A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry. 1979 Sep 18;18(19):4159–4165. doi: 10.1021/bi00586a017. [DOI] [PubMed] [Google Scholar]
  15. Prossnitz E., Gee A., Ames G. F. Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. J Biol Chem. 1989 Mar 25;264(9):5006–5014. [PubMed] [Google Scholar]
  16. Quiocho F. A., Vyas N. K. Novel stereospecificity of the L-arabinose-binding protein. Nature. 1984 Aug 2;310(5976):381–386. doi: 10.1038/310381a0. [DOI] [PubMed] [Google Scholar]
  17. Scripture J. B., Voelker C., Miller S., O'Donnell R. T., Polgar L., Rade J., Horazdovsky B. F., Hogg R. W. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products. J Mol Biol. 1987 Sep 5;197(1):37–46. doi: 10.1016/0022-2836(87)90607-3. [DOI] [PubMed] [Google Scholar]
  18. Spurlino J. C., Lu G. Y., Quiocho F. A. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem. 1991 Mar 15;266(8):5202–5219. doi: 10.2210/pdb1mbp/pdb. [DOI] [PubMed] [Google Scholar]
  19. Treptow N. A., Shuman H. A. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol. 1988 Aug 20;202(4):809–822. doi: 10.1016/0022-2836(88)90560-8. [DOI] [PubMed] [Google Scholar]
  20. Vyas N. K., Vyas M. N., Quiocho F. A. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and Functional Similarity. J Biol Chem. 1991 Mar 15;266(8):5226–5237. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES