Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Dec;1(12):1666–1676. doi: 10.1002/pro.5560011215

Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.

Y L Zhang 1, W A Cramer 1
PMCID: PMC2142128  PMID: 1284805

Abstract

The surface topography of a 190-residue COOH-terminal colicin E1 channel peptide (NH2-Met 333-Ile 522-COOH) bound to uniformly sized 0.2-micron liposomes was probed by accessibility of the peptide to proteases in order (1) to determine whether the channel structure contains trans-membrane segments in addition to the four alpha-helices previously identified and (2) to discriminate between different topographical possibilities for the surface-bound state. An unfolded surface-bound state is indicated by increased trypsin susceptibility of the bound peptide relative to that of the peptide in aqueous solution. The peptide is bound tightly to the membrane surface with Kd < 10(-7) M. The NH2-terminal 50 residues of the membrane-bound peptide are unbound or loosely bound as indicated by their accessibility to proteases, in contrast with the COOH-terminal 140 residues, which are almost protease inaccessible. The general protease accessibility of the NH2-terminal segment Ala 336-Lys 382 excludes any model for the closed channel state that would include trans-membrane helices on the NH2-terminal side of Lys 382. Lys 381-Lys 382 is a major site for protease cleavage of the surface-bound channel peptide. A site for proteinase K cleavage just upstream of the amphiphilic gating hairpin (K420-K461) implies the presence of a surface-exposed segment in this region. These protease accessibility data indicate that it is unlikely that there are any alpha-helices on the NH2-terminal side of the gating hairpin K420-K461 that are inserted into the membrane in the absence of a membrane potential. A model for the topography of an unfolded monomeric surface-bound intermediate of the colicin channel domain, including a trans-membrane hydrophobic helical hairpin and two or three long surface-bound helices, is proposed.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams C. K., Jakes K. S., Finkelstein A., Slatin S. L. Identification of a translocated gating charge in a voltage-dependent channel. Colicin E1 channels in planar phospholipid bilayer membranes. J Gen Physiol. 1991 Jul;98(1):77–93. doi: 10.1085/jgp.98.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baty D., Lakey J., Pattus F., Lazdunski C. A 136-amino-acid-residue COOH-terminal fragment of colicin A is endowed with ionophoric activity. Eur J Biochem. 1990 Apr 30;189(2):409–413. doi: 10.1111/j.1432-1033.1990.tb15503.x. [DOI] [PubMed] [Google Scholar]
  3. Brisson A., Mosser G., Huber R. Structure of soluble and membrane-bound human annexin V. J Mol Biol. 1991 Jul 20;220(2):199–203. doi: 10.1016/0022-2836(91)90002-n. [DOI] [PubMed] [Google Scholar]
  4. Brunden K. R., Uratani Y., Cramer W. A. Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity. J Biol Chem. 1984 Jun 25;259(12):7682–7687. [PubMed] [Google Scholar]
  5. Bullock J. O., Cohen F. S., Dankert J. R., Cramer W. A. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. J Biol Chem. 1983 Aug 25;258(16):9908–9912. [PubMed] [Google Scholar]
  6. Bullock J. O. Ion selectivity of colicin E1: modulation by pH and membrane composition. J Membr Biol. 1992 Feb;125(3):255–271. doi: 10.1007/BF00236438. [DOI] [PubMed] [Google Scholar]
  7. Cleveland M. V., Slatin S., Finkelstein A., Levinthal C. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3706–3710. doi: 10.1073/pnas.80.12.3706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dankert J., Hammond S. M., Cramer W. A. Reversal by trypsin of the inhibition of active transport by colicin E1. J Bacteriol. 1980 Aug;143(2):594–602. doi: 10.1128/jb.143.2.594-602.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davidson V. L., Brunden K. R., Cramer W. A. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: relevance to the mechanism of action of colicins and certain toxins. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1386–1390. doi: 10.1073/pnas.82.5.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  12. Goormaghtigh E., Vigneron L., Knibiehler M., Lazdunski C., Ruysschaert J. M. Secondary structure of the membrane-bound form of the pore-forming domain of colicin A. An attenuated total-reflection polarized Fourier-transform infrared spectroscopy study. Eur J Biochem. 1991 Dec 18;202(3):1299–1305. doi: 10.1111/j.1432-1033.1991.tb16503.x. [DOI] [PubMed] [Google Scholar]
  13. Grove A., Tomich J. M., Montal M. A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6418–6422. doi: 10.1073/pnas.88.15.6418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hartmann H. A., Kirsch G. E., Drewe J. A., Taglialatela M., Joho R. H., Brown A. M. Exchange of conduction pathways between two related K+ channels. Science. 1991 Feb 22;251(4996):942–944. doi: 10.1126/science.2000495. [DOI] [PubMed] [Google Scholar]
  15. Hille J. D., Donné-Op den Kelder G. M., Sauve P., de Haas G. H., Egmond M. R. Physicochemical studies on the interaction of pancreatic phospholipase A2 with a micellar substrate analogue. Biochemistry. 1981 Jul 7;20(14):4068–4073. doi: 10.1021/bi00517a019. [DOI] [PubMed] [Google Scholar]
  16. JACOB F., SIMINOVITCH L., WOLLMAN E. Sur la biosynthèse d'une colicine et sur son mode d'action. Ann Inst Pasteur (Paris) 1952 Sep;83(3):295–315. [PubMed] [Google Scholar]
  17. Lakey J. H., Baty D., Pattus F. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. J Mol Biol. 1991 Apr 5;218(3):639–653. doi: 10.1016/0022-2836(91)90707-d. [DOI] [PubMed] [Google Scholar]
  18. Lau C., Richards F. M. Behavior of colicins E1, E2, and E3 attached to sephadex beads. Biochemistry. 1976 Feb 10;15(3):666–671. doi: 10.1021/bi00648a034. [DOI] [PubMed] [Google Scholar]
  19. Levinthal F., Todd A. P., Hubbell W. L., Levinthal C. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics. Proteins. 1991;11(4):254–262. doi: 10.1002/prot.340110404. [DOI] [PubMed] [Google Scholar]
  20. Liu Q. R., Crozel V., Levinthal F., Slatin S., Finkelstein A., Levinthal C. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1. Proteins. 1986 Nov;1(3):218–229. doi: 10.1002/prot.340010304. [DOI] [PubMed] [Google Scholar]
  21. Merrill A. R., Cohen F. S., Cramer W. A. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry. 1990 Jun 19;29(24):5829–5836. doi: 10.1021/bi00476a026. [DOI] [PubMed] [Google Scholar]
  22. Merrill A. R., Cramer W. A. Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel. Biochemistry. 1990 Sep 18;29(37):8529–8534. doi: 10.1021/bi00489a004. [DOI] [PubMed] [Google Scholar]
  23. Parker M. W., Postma J. P., Pattus F., Tucker A. D., Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol. 1992 Apr 5;224(3):639–657. doi: 10.1016/0022-2836(92)90550-4. [DOI] [PubMed] [Google Scholar]
  24. Peterson A. A., Cramer W. A. Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J Membr Biol. 1987;99(3):197–204. doi: 10.1007/BF01995700. [DOI] [PubMed] [Google Scholar]
  25. Raymond L., Slatin S. L., Finkelstein A. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J Membr Biol. 1985;84(2):173–181. doi: 10.1007/BF01872215. [DOI] [PubMed] [Google Scholar]
  26. Raymond L., Slatin S. L., Finkelstein A., Liu Q. R., Levinthal C. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain. J Membr Biol. 1986;92(3):255–268. doi: 10.1007/BF01869394. [DOI] [PubMed] [Google Scholar]
  27. Schein S. J., Kagan B. L., Finkelstein A. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature. 1978 Nov 9;276(5684):159–163. doi: 10.1038/276159a0. [DOI] [PubMed] [Google Scholar]
  28. Schwartz S. A., Helinski D. R. Purification and characterization of colicin E1. J Biol Chem. 1971 Oct 25;246(20):6318–6327. [PubMed] [Google Scholar]
  29. Slatin S. L., Raymond L., Finkelstein A. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: the role of protein translocation. J Membr Biol. 1986;92(3):247–254. doi: 10.1007/BF01869393. [DOI] [PubMed] [Google Scholar]
  30. Song H. Y., Cohen F. S., Cramer W. A. Membrane topography of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. J Bacteriol. 1991 May;173(9):2927–2934. doi: 10.1128/jb.173.9.2927-2934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Song H. Y., Cramer W. A. Membrane topography of ColE1 gene products: the immunity protein. J Bacteriol. 1991 May;173(9):2935–2943. doi: 10.1128/jb.173.9.2935-2943.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stephan M., Agnew W. S. Voltage-sensitive Na+ channels: motifs, modes and modulation. Curr Opin Cell Biol. 1991 Aug;3(4):676–684. doi: 10.1016/0955-0674(91)90041-v. [DOI] [PubMed] [Google Scholar]
  33. Suga H., Shirabe K., Yamamoto T., Tasumi M., Umeda M., Nishimura C., Nakazawa A., Nakanishi M., Arata Y. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. J Biol Chem. 1991 Jul 25;266(21):13537–13543. [PubMed] [Google Scholar]
  34. Xu S., Cramer W. A., Peterson A. A., Hermodson M., Montecucco C. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7531–7535. doi: 10.1073/pnas.85.20.7531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamada M., Ebina Y., Miyata T., Nakazawa T., Nakazawa A. Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc Natl Acad Sci U S A. 1982 May;79(9):2827–2831. doi: 10.1073/pnas.79.9.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yellen G., Jurman M. E., Abramson T., MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science. 1991 Feb 22;251(4996):939–942. doi: 10.1126/science.2000494. [DOI] [PubMed] [Google Scholar]
  37. van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES