Abstract
A kinetic model is presented based on the simplest plausible mechanism for bacterial binding protein-dependent transport. The transport phenotypes of the 18 variant arabinose-binding proteins analyzed by Kehres and Hogg (1992, Protein Sci. 1, 1652-1660) (wild type and 17 mutants) are interpreted to mean that in wild-type arabinose uptake the forward transport rate (k(for)) greatly exceeds the dissociation rate (kund) of a binding protein docked with the AraG:AraH membrane complex, and that k(for) dominance is preserved in all of the binding protein surface mutants. The assumptions and predictions of the model are consistent with existing data from other periplasmic transport systems.
Full Text
The Full Text of this article is available as a PDF (476.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. doi: 10.1146/annurev.bi.55.070186.002145. [DOI] [PubMed] [Google Scholar]
- Binnie R. A., Zhang H., Mowbray S., Hermodson M. A. Functional mapping of the surface of Escherichia coli ribose-binding protein: mutations that affect chemotaxis and transport. Protein Sci. 1992 Dec;1(12):1642–1651. doi: 10.1002/pro.5560011212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson A. L., Wagner L. M., Collins F. S., Oxender D. L. A bacterial system for investigating transport effects of cystic fibrosis--associated mutations. Science. 1991 Oct 4;254(5028):109–111. doi: 10.1126/science.1718037. [DOI] [PubMed] [Google Scholar]
- Hogg R. W. L-Arabinose transport and the L-arabinose binding protein of Escherichia coli. J Supramol Struct. 1977;6(3):411–417. doi: 10.1002/jss.400060314. [DOI] [PubMed] [Google Scholar]
- Manson M. D., Boos W., Bassford P. J., Jr, Rasmussen B. A. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem. 1985 Aug 15;260(17):9727–9733. [PubMed] [Google Scholar]
- Miller D. M., 3rd, Olson J. S., Pflugrath J. W., Quiocho F. A. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J Biol Chem. 1983 Nov 25;258(22):13665–13672. [PubMed] [Google Scholar]
- Prossnitz E. Determination of a region of the HisJ binding protein involved in the recognition of the membrane complex of the histidine transport system of Salmonella typhimurium. J Biol Chem. 1991 May 25;266(15):9673–9677. [PubMed] [Google Scholar]
- Prossnitz E., Gee A., Ames G. F. Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. J Biol Chem. 1989 Mar 25;264(9):5006–5014. [PubMed] [Google Scholar]
- Shyamala V., Baichwal V., Beall E., Ames G. F. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J Biol Chem. 1991 Oct 5;266(28):18714–18719. [PubMed] [Google Scholar]
- Speiser D. M., Ames G. F. Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins. J Bacteriol. 1991 Feb;173(4):1444–1451. doi: 10.1128/jb.173.4.1444-1451.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treptow N. A., Shuman H. A. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol. 1988 Aug 20;202(4):809–822. doi: 10.1016/0022-2836(88)90560-8. [DOI] [PubMed] [Google Scholar]
- Treptow N. A., Shuman H. A. Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol. 1985 Aug;163(2):654–660. doi: 10.1128/jb.163.2.654-660.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]