Abstract
Ribonuclease A is known to form an equilibrium mixture of fast-folding (UF) and slow-folding (US) species. Rapid unfolding to UF is then followed by a reaction in the unfolded state, which produces a mixture of UF, USII, USI, and possibly also minor populations of other US species. The two cis proline residues, P93 and P114, are logical candidates for producing the major US species after unfolding, by slow cis <==> trans isomerization. Much work has been done in the past on testing this proposal, but the results have been controversial. Site-directed mutagenesis is used here. Four single mutants, P93A, P93S, P114A, and P114G, and also the double mutant P93A, P114G have been made and tested for the formation of US species after unfolding. The single mutants P114G and P114A still show slow isomerization reactions after unfolding that produce US species; thus, Pro 114 is not required for the formation of at least one of the major US species of ribonuclease A. Both the refolding kinetics and the isomerization kinetics after unfolding of the Pro 93 single mutants are unexpectedly complex, possibly because the substituted amino acid forms a cis peptide bond, which should undergo cis --> trans isomerization after unfolding. The kinetics of peptide bond isomerization are not understood at present and the Pro 93 single mutants cannot be used yet to investigate the role of Pro 93 in forming the US species of ribonuclease A. The double mutant P93A, P114G shows single exponential kinetics measured by CD, and it shows no evidence of isomerization after unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (721.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler M., Scheraga H. A. Nonnative isomers of proline-93 and -114 predominate in heat-unfolded ribonuclease A. Biochemistry. 1990 Sep 11;29(36):8211–8216. doi: 10.1021/bi00488a003. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
- Chen B. L., Baase W. A., Nicholson H., Schellman J. A. Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. Biochemistry. 1992 Feb 11;31(5):1464–1476. doi: 10.1021/bi00120a025. [DOI] [PubMed] [Google Scholar]
- Cook K. H., Schmid F. X., Baldwin R. L. Role of proline isomerization in folding of ribonuclease A at low temperatures. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6157–6161. doi: 10.1073/pnas.76.12.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans P. A., Dobson C. M., Kautz R. A., Hatfull G., Fox R. O. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature. 1987 Sep 17;329(6136):266–268. doi: 10.1038/329266a0. [DOI] [PubMed] [Google Scholar]
- Garel J. R., Nall B. T., Baldwin R. L. Guanidine-unfolded state of ribonuclease A contains both fast- and slow-refolding species. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1853–1857. doi: 10.1073/pnas.73.6.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grathwohl C., Wüthrich K. Nmr studies of the molecular conformations in the linear oligopeptides H-(L-Ala)n-L-Pro-OH. Biopolymers. 1976 Oct;15(10):2043–2057. doi: 10.1002/bip.1976.360151013. [DOI] [PubMed] [Google Scholar]
- Grathwohl C., Wüthrich K. The X-Pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers. 1976 Oct;15(10):2025–2041. doi: 10.1002/bip.1976.360151012. [DOI] [PubMed] [Google Scholar]
- Hagerman P. J., Baldwin R. L. A quantitative treatment of the kinetics of the folding transition of ribonuclease A. Biochemistry. 1976 Apr 6;15(7):1462–1473. doi: 10.1021/bi00652a017. [DOI] [PubMed] [Google Scholar]
- Herning T., Yutani K., Taniyama Y., Kikuchi M. Effects of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cis-trans isomerization. Biochemistry. 1991 Oct 15;30(41):9882–9891. doi: 10.1021/bi00105a011. [DOI] [PubMed] [Google Scholar]
- Kelley R. F., Richards F. M. Replacement of proline-76 with alanine eliminates the slowest kinetic phase in thioredoxin folding. Biochemistry. 1987 Oct 20;26(21):6765–6774. doi: 10.1021/bi00395a028. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Grunert H. P., Hahn U., Schmid F. X. Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry. 1990 Jul 10;29(27):6475–6480. doi: 10.1021/bi00479a020. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Quaas R., Hahn U., Schmid F. X. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry. 1990 Mar 27;29(12):3053–3061. doi: 10.1021/bi00464a023. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Schmid F. X. Kinetic coupling between protein folding and prolyl isomerization. II. Folding of ribonuclease A and ribonuclease T1. J Mol Biol. 1992 Mar 5;224(1):231–240. doi: 10.1016/0022-2836(92)90586-9. [DOI] [PubMed] [Google Scholar]
- Krebs H., Schmid F. X., Jaenicke R. Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation. J Mol Biol. 1983 Sep 15;169(2):619–635. doi: 10.1016/s0022-2836(83)80067-9. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Okayama N., Yamamoto K., Ishihara T., Sugai S. The Pro117 to glycine mutation of staphylococcal nuclease simplifies the unfolding-folding kinetics. FEBS Lett. 1991 Sep 23;290(1-2):135–138. doi: 10.1016/0014-5793(91)81243-2. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Brandts J. F. Evidence for the existence of three or more slow phases in the refolding of ribonuclease A and some characteristics of the phases. Biochemistry. 1987 Jun 16;26(12):3537–3543. doi: 10.1021/bi00386a043. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Brandts J. F. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis. Biochemistry. 1984 Nov 20;23(24):5713–5723. doi: 10.1021/bi00319a009. [DOI] [PubMed] [Google Scholar]
- Lin L. N., Brandts J. F. Separation of the nativelike intermediate from unfolded forms during refolding of ribonuclease A. Biochemistry. 1988 Dec 13;27(25):9037–9042. doi: 10.1021/bi00425a023. [DOI] [PubMed] [Google Scholar]
- Nall B. T., Garel J. R., Baldwin R. L. Test of the extended two-state model for the kinetic intermediates observed in the folding transition of ribonuclease A. J Mol Biol. 1978 Jan 25;118(3):317–330. doi: 10.1016/0022-2836(78)90231-0. [DOI] [PubMed] [Google Scholar]
- Ramdas L., Nall B. T. Folding/unfolding kinetics of mutant forms of iso-1-cytochrome c with replacement of proline-71. Biochemistry. 1986 Nov 4;25(22):6959–6964. doi: 10.1021/bi00370a033. [DOI] [PubMed] [Google Scholar]
- Rehage A., Schmid F. X. Fast- and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence. Biochemistry. 1982 Mar 30;21(7):1499–1505. doi: 10.1021/bi00536a006. [DOI] [PubMed] [Google Scholar]
- Schmid F. X., Grafl R., Wrba A., Beintema J. J. Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease. Proc Natl Acad Sci U S A. 1986 Feb;83(4):872–876. doi: 10.1073/pnas.83.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid F. X. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates. Biochemistry. 1983 Sep 27;22(20):4690–4696. doi: 10.1021/bi00289a013. [DOI] [PubMed] [Google Scholar]
- Schultz D. A., Baldwin R. L. Cis proline mutants of ribonuclease A. I. Thermal stability. Protein Sci. 1992 Jul;1(7):910–916. doi: 10.1002/pro.5560010709. [DOI] [PMC free article] [PubMed] [Google Scholar]
