Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jul;1(7):945–955. doi: 10.1002/pro.5560010713

Role of interchain alpha-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C.

O D Monera 1, G S Shaw 1, B Y Zhu 1, B D Sykes 1, C M Kay 1, R S Hodges 1
PMCID: PMC2142150  PMID: 1304377

Abstract

We have previously shown that a 34-residue synthetic peptide representing the calcium-binding site III of troponin C formed a symmetric two-site dimer consisting of two helix-loop-helix motifs arranged in a head-to-tail fashion (Shaw, G.S., Hodges, R.S., & Sykes, B.D., 1990, Science 249, 280-283). In this study the hydrophobicities of the alpha-helices were altered by replacing L-98 and F-102 in the N-terminal region and/or I-121 and L-122 in the C-terminal region with alanine residues. Our results showed that substitution of hydrophobic residues either in the N- or C-terminal region have little effect on alpha-helix formation but resulted in a 100- and 300-fold decrease in Ca2+ affinity, respectively. Simultaneous substitution of both hydrophobes in the N- and C-terminal region resulted in a 1,000-fold decrease in Ca2+ affinity. Data from guanidine hydrochloride denaturation studies suggested that intermolecular interactions occur and that the less hydrophobic analogs had a lower overall conformational stability. These data support the contention that the hydrophobic residues are important in the formation of the two-site domain in troponin C, and this hydrophobic association stabilizes Ca2+ affinity.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad F., Bigelow C. C. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin. J Biol Chem. 1982 Nov 10;257(21):12935–12938. [PubMed] [Google Scholar]
  2. Aune K. C., Tanford C. Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Depdendence on pH at 25 degrees. Biochemistry. 1969 Nov;8(11):4579–4585. doi: 10.1021/bi00839a052. [DOI] [PubMed] [Google Scholar]
  3. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  4. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  5. Beckingham K. Use of site-directed mutations in the individual Ca2(+)-binding sites of calmodulin to examine Ca2(+)-induced conformational changes. J Biol Chem. 1991 Apr 5;266(10):6027–6030. [PubMed] [Google Scholar]
  6. Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  8. Dobrowolski Z., Xu G. Q., Hitchcock-DeGregori S. E. Modified calcium-dependent regulatory function of troponin C central helix mutants. J Biol Chem. 1991 Mar 25;266(9):5703–5710. [PubMed] [Google Scholar]
  9. Fujimori K., Sorenson M., Herzberg O., Moult J., Reinach F. C. Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature. 1990 May 10;345(6271):182–184. doi: 10.1038/345182a0. [DOI] [PubMed] [Google Scholar]
  10. Gariépy J., Kay L. E., Kuntz I. D., Sykes B. D., Hodges R. S. Nuclear magnetic resonance determination of metal-proton distances in a synthetic calcium binding site of rabbit skeletal troponin C. Biochemistry. 1985 Jan 15;24(2):544–550. doi: 10.1021/bi00323a045. [DOI] [PubMed] [Google Scholar]
  11. Gariépy J., Sykes B. D., Hodges R. S. Lanthanide-induced peptide folding: variations in lanthanide affinity and induced peptide conformation. Biochemistry. 1983 Apr 12;22(8):1765–1772. doi: 10.1021/bi00277a004. [DOI] [PubMed] [Google Scholar]
  12. Gariépy J., Sykes B. D., Reid R. E., Hodges R. S. Proton nuclear magnetic resonance investigation of synthetic calcium-binding peptides. Biochemistry. 1982 Mar 30;21(7):1506–1512. doi: 10.1021/bi00536a007. [DOI] [PubMed] [Google Scholar]
  13. Grabarek Z., Tan R. Y., Wang J., Tao T., Gergely J. Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature. 1990 May 10;345(6271):132–135. doi: 10.1038/345132a0. [DOI] [PubMed] [Google Scholar]
  14. Greene R. F., Jr, Pace C. N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem. 1974 Sep 10;249(17):5388–5393. [PubMed] [Google Scholar]
  15. Haiech J., Kilhoffer M. C., Lukas T. J., Craig T. A., Roberts D. M., Watterson D. M. Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. J Biol Chem. 1991 Feb 25;266(6):3427–3431. [PubMed] [Google Scholar]
  16. Hodges R. S., Zhou N. E., Kay C. M., Semchuk P. D. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Pept Res. 1990 May-Jun;3(3):123–137. [PubMed] [Google Scholar]
  17. Kay L. E., Forman-Kay J. D., McCubbin W. D., Kay C. M. Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4323–4333. doi: 10.1021/bi00231a031. [DOI] [PubMed] [Google Scholar]
  18. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  19. Kretsinger R. H., Rudnick S. E., Weissman L. J. Crystal structure of calmodulin. J Inorg Biochem. 1986 Oct-Nov;28(2-3):289–302. doi: 10.1016/0162-0134(86)80093-9. [DOI] [PubMed] [Google Scholar]
  20. Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
  21. Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
  22. Marsden B. J., Hodges R. S., Sykes B. D. 1H-NMR studies of synthetic peptide analogues of calcium-binding site III of rabbit skeletal troponin C: effect on the lanthanum affinity of the interchange of aspartic acid and asparagine residues at the metal ion coordinating positions. Biochemistry. 1988 May 31;27(11):4198–4206. doi: 10.1021/bi00411a043. [DOI] [PubMed] [Google Scholar]
  23. Marsden B. J., Hodges R. S., Sykes B. D. A 1H NMR determination of the solution conformation of a synthetic peptide analogue of calcium-binding site III of rabbit skeletal troponin C. Biochemistry. 1989 Oct 31;28(22):8839–8847. doi: 10.1021/bi00448a024. [DOI] [PubMed] [Google Scholar]
  24. Matsumura M., Becktel W. J., Matthews B. W. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature. 1988 Aug 4;334(6181):406–410. doi: 10.1038/334406a0. [DOI] [PubMed] [Google Scholar]
  25. Matthews C. R., Crisanti M. M. Urea-induced unfolding of the alpha subunit of tryptophan synthase: evidence for a multistate process. Biochemistry. 1981 Feb 17;20(4):784–792. doi: 10.1021/bi00507a021. [DOI] [PubMed] [Google Scholar]
  26. Nagy B., Potter J. D., Gergely J. Calcium-induced conformational changes in a cyanogen bromide fragment of troponin C that contains one of the binding sites. J Biol Chem. 1978 Sep 10;253(17):5971–5974. [PubMed] [Google Scholar]
  27. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  28. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  30. Pace C. N., Vanderburg K. E. Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin. Biochemistry. 1979 Jan 23;18(2):288–292. doi: 10.1021/bi00569a008. [DOI] [PubMed] [Google Scholar]
  31. Pastore A., De Francesco R., Barbato G., Castiglione Morelli M. A., Motta A., Cortese R. 1H resonance assignment and secondary structure determination of the dimerization domain of transcription factor LFB1. Biochemistry. 1991 Jan 8;30(1):148–153. doi: 10.1021/bi00215a022. [DOI] [PubMed] [Google Scholar]
  32. Reid R. E., Clare D. M., Hodges R. S. Synthetic analog of a high affinity calcium binding site in rabbit skeletal troponin C. J Biol Chem. 1980 Apr 25;255(8):3642–3646. [PubMed] [Google Scholar]
  33. Reid R. E., Hodges R. S. Co-operativity and calcium/magnesium binding to troponin C and muscle calcium binding parvalbumin: an hypothesis. J Theor Biol. 1980 Jun 7;84(3):401–444. doi: 10.1016/s0022-5193(80)80013-0. [DOI] [PubMed] [Google Scholar]
  34. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  35. Sekharudu Y. C., Sundaralingam M. A structure-function relationship for the calcium affinities of regulatory proteins containing 'EF-hand' pairs. Protein Eng. 1988 Jul;2(2):139–146. doi: 10.1093/protein/2.2.139. [DOI] [PubMed] [Google Scholar]
  36. Shaw G. S., Hodges R. S., Sykes B. D. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science. 1990 Jul 20;249(4966):280–283. doi: 10.1126/science.2374927. [DOI] [PubMed] [Google Scholar]
  37. Shaw G. S., Hodges R. S., Sykes B. D. Probing the relationship between alpha-helix formation and calcium affinity in troponin C: 1H NMR studies of calcium binding to synthetic and variant site III helix-loop-helix peptides. Biochemistry. 1991 Aug 27;30(34):8339–8347. doi: 10.1021/bi00098a009. [DOI] [PubMed] [Google Scholar]
  38. Shaw G. S., Hodges R. S., Sykes B. D. Stoichiometry of calcium binding to a synthetic heterodimeric troponin-C domain. Biopolymers. 1992 Apr;32(4):391–397. doi: 10.1002/bip.360320415. [DOI] [PubMed] [Google Scholar]
  39. Sheng Z. L., Francois J. M., Hitchcock-DeGregori S. E., Potter J. D. Effects of mutations in the central helix of troponin C on its biological activity. J Biol Chem. 1991 Mar 25;266(9):5711–5715. [PubMed] [Google Scholar]
  40. Shortle D. Probing the determinants of protein folding and stability with amino acid substitutions. J Biol Chem. 1989 Apr 5;264(10):5315–5318. [PubMed] [Google Scholar]
  41. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  42. Tsuji T., Kaiser E. T. Design and synthesis of the pseudo-EF hand in calbindin D9K: effect of amino acid substitutions in the alpha-helical regions. Proteins. 1991;9(1):12–22. doi: 10.1002/prot.340090103. [DOI] [PubMed] [Google Scholar]
  43. Wong K. P., Tanford C. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J Biol Chem. 1973 Dec 25;248(24):8518–8523. [PubMed] [Google Scholar]
  44. Yutani K., Ogasahara K., Suzuki M., Sugino Y. Comparison of denaturation by guanidine hydrochloride of the wild type tryptophan synthase alpha-subunit of Escherichia coli and two mutant protein (Glu 49 replaced by Met or Gln). J Biochem. 1979 Apr;85(4):915–921. doi: 10.1093/oxfordjournals.jbchem.a132423. [DOI] [PubMed] [Google Scholar]
  45. Zhou N. E., Kay C. M., Hodges R. S. Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J Biol Chem. 1992 Feb 5;267(4):2664–2670. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES