Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jul;1(7):910–916. doi: 10.1002/pro.5560010709

Cis proline mutants of ribonuclease A. I. Thermal stability.

D A Schultz 1, R L Baldwin 1
PMCID: PMC2142151  PMID: 1338975

Abstract

A chemically synthesized gene for ribonuclease A has been expressed in Escherichia coli using a T7 expression system (Studier, F.W., Rosenberg, A.H., Dunn, J.J., & Dubendorff, J.W., 1990, Methods Enzymol. 185, 60-89). The expressed protein, which contains an additional N-terminal methionine residue, has physical and catalytic properties close to those of bovine ribonuclease A. The expressed protein accumulates in inclusion bodies and has scrambled disulfide bonds; the native disulfide bonds are regenerated during purification. Site-directed mutations have been made at each of the two cis proline residues, 93 and 114, and a double mutant has been made. In contrast to results reported for replacement of trans proline residues, replacement of either cis proline is strongly destabilizing. Thermal unfolding experiments on four single mutants give delta Tm approximately equal to 10 degrees C and delta delta G0 (apparent) = 2-3 kcal/mol. The reason is that either the substituted amino acid goes in cis, and cis<==>trans isomerization after unfolding pulls the unfolding equilibrium toward the unfolded state, or else there is a conformational change, which by itself is destabilizing relative to the wild-type conformation, that allows the substituted amino acid to form a trans peptide bond.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler M., Scheraga H. A. Nonnative isomers of proline-93 and -114 predominate in heat-unfolded ribonuclease A. Biochemistry. 1990 Sep 11;29(36):8211–8216. doi: 10.1021/bi00488a003. [DOI] [PubMed] [Google Scholar]
  2. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  3. Beintema J. J., Fitch W. M., Carsana A. Molecular evolution of pancreatic-type ribonucleases. Mol Biol Evol. 1986 May;3(3):262–275. doi: 10.1093/oxfordjournals.molbev.a040393. [DOI] [PubMed] [Google Scholar]
  4. CROOK E. M., MATHIAS A. P., RABIN B. R. Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2':3'-phosphate. Biochem J. 1960 Feb;74:234–238. doi: 10.1042/bj0740234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen B. L., Baase W. A., Nicholson H., Schellman J. A. Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. Biochemistry. 1992 Feb 11;31(5):1464–1476. doi: 10.1021/bi00120a025. [DOI] [PubMed] [Google Scholar]
  6. Denèfle P., Kovarik S., Guitton J. D., Cartwright T., Mayaux J. F. Chemical synthesis of a gene coding for human angiogenin, its expression in Escherichia coli and conversion of the product into its active form. Gene. 1987;56(1):61–70. doi: 10.1016/0378-1119(87)90158-2. [DOI] [PubMed] [Google Scholar]
  7. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  8. Evans P. A., Dobson C. M., Kautz R. A., Hatfull G., Fox R. O. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature. 1987 Sep 17;329(6136):266–268. doi: 10.1038/329266a0. [DOI] [PubMed] [Google Scholar]
  9. Evans P. A., Kautz R. A., Fox R. O., Dobson C. M. A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease. Biochemistry. 1989 Jan 10;28(1):362–370. doi: 10.1021/bi00427a050. [DOI] [PubMed] [Google Scholar]
  10. Garel J. R., Baldwin R. L. Both the fast and slow refolding reactions of ribonuclease A yield native enzyme. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3347–3351. doi: 10.1073/pnas.70.12.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herning T., Yutani K., Taniyama Y., Kikuchi M. Effects of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cis-trans isomerization. Biochemistry. 1991 Oct 15;30(41):9882–9891. doi: 10.1021/bi00105a011. [DOI] [PubMed] [Google Scholar]
  12. Herzberg O., Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins. 1991;11(3):223–229. doi: 10.1002/prot.340110307. [DOI] [PubMed] [Google Scholar]
  13. Ihara S., Ooi T. Energy difference associated with proline isomerization in ribonuclease A. Biochim Biophys Acta. 1985 Jul 18;830(1):109–112. doi: 10.1016/0167-4838(85)90139-6. [DOI] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Kurachi K., Rybak S. M., Fett J. W., Shapiro R., Strydom D. J., Olson K. A., Riordan J. F., Davie E. W., Vallee B. L. Expression of human angiogenin in cultured baby hamster kidney cells. Biochemistry. 1988 Aug 23;27(17):6557–6562. doi: 10.1021/bi00417a054. [DOI] [PubMed] [Google Scholar]
  16. Levitt M. Effect of proline residues on protein folding. J Mol Biol. 1981 Jan 5;145(1):251–263. doi: 10.1016/0022-2836(81)90342-9. [DOI] [PubMed] [Google Scholar]
  17. Lin L. N., Brandts J. F. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis. Biochemistry. 1984 Nov 20;23(24):5713–5723. doi: 10.1021/bi00319a009. [DOI] [PubMed] [Google Scholar]
  18. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  19. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchinson C., Baldwin R. L. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability. Proteins. 1986 Sep;1(1):23–33. doi: 10.1002/prot.340010106. [DOI] [PubMed] [Google Scholar]
  21. Quaas R., McKeown Y., Stanssens P., Frank R., Blöcker H., Hahn U. Expression of the chemically synthesized gene for ribonuclease T1 in Escherichia coli using a secretion cloning vector. Eur J Biochem. 1988 May 2;173(3):617–622. doi: 10.1111/j.1432-1033.1988.tb14043.x. [DOI] [PubMed] [Google Scholar]
  22. Ramachandran G. N., Mitra A. K. An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J Mol Biol. 1976 Oct 15;107(1):85–92. doi: 10.1016/s0022-2836(76)80019-8. [DOI] [PubMed] [Google Scholar]
  23. Sano T., Cantor C. R. Expression of a cloned streptavidin gene in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jan;87(1):142–146. doi: 10.1073/pnas.87.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  25. Schaffer S. W., Ahmed A. K., Wetlaufer D. B. Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease. J Biol Chem. 1975 Nov 10;250(21):8483–8486. [PubMed] [Google Scholar]
  26. Schultz D. A., Schmid F. X., Baldwin R. L. Cis proline mutants of ribonuclease A. II. Elimination of the slow-folding forms by mutation. Protein Sci. 1992 Jul;1(7):917–924. doi: 10.1002/pro.5560010710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Skelton N. J., Forsén S., Chazin W. J. 1H NMR resonance assignments, secondary structure, and global fold of Apo bovine calbindin D9k. Biochemistry. 1990 Jun 19;29(24):5752–5761. doi: 10.1021/bi00476a016. [DOI] [PubMed] [Google Scholar]
  28. Stewart D. E., Sarkar A., Wampler J. E. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253–260. doi: 10.1016/0022-2836(90)90159-J. [DOI] [PubMed] [Google Scholar]
  29. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  30. Yun R. H., Anderson A., Hermans J. Proline in alpha-helix: stability and conformation studied by dynamics simulation. Proteins. 1991;10(3):219–228. doi: 10.1002/prot.340100306. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES