Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Jul;1(7):850–860. doi: 10.1002/pro.5560010703

Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. I. Binding of ATP.

J Geiselmann 1, P H von Hippel 1
PMCID: PMC2142155  PMID: 1304371

Abstract

Escherichia coli transcription termination factor rho is an RNA-dependent ATPase, and ATPase activity is required for all its functions. We have characterized the binding of ATP to the physiologically relevant hexameric association state of rho in the absence of RNA and have shown that there are six ATP binding sites per rho hexamer. This stoichiometry has been verified by a number of different techniques, including ultracentrifugation, ultrafiltration, and fluorescence titration studies. We have also shown that ATP can bind to isolated monomers of rho when the hexamer is dissociated with the mild denaturant myristyltrimethylammonium bromide, demonstrating that each promoter of rho carries an ATP binding site. The six binding sites that we observe in the rho hexamer are not equivalent; the hexamer contains three strong (Ka approximately 3 x 10(6) M-1) and three weak (Ka approximately 10(5) M-1) binding sites for ATP. The binding constant of the weak binding site is just the reciprocal of the enzymatic Km for ATP as a substrate; thus these weak sites, as well as the strong sites, can, in principle, take part in the catalytic cycle. The asymmetry induced (or manifested) by ATP binding reduces the symmetry of the rho hexamer from a D3 to a pseudo-D3 state. This "breakage" of symmetry has implications for the molecular mechanism of rho, because an asymmetric structure can lead to directional helicase activity by invoking directionally distinct RNA binding and release reactions (see Geiselmann, J., Yager, T.D., & von Hippel, P.H., 1992c, Protein Sci. 1, 861-873).

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bear D. G., Andrews C. L., Singer J. D., Morgan W. D., Grant R. A., von Hippel P. H., Platt T. Escherichia coli transcription termination factor rho has a two-domain structure in its activated form. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1911–1915. doi: 10.1073/pnas.82.7.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brennan C. A., Dombroski A. J., Platt T. Transcription termination factor rho is an RNA-DNA helicase. Cell. 1987 Mar 27;48(6):945–952. doi: 10.1016/0092-8674(87)90703-3. [DOI] [PubMed] [Google Scholar]
  3. Brennan C. A., Steinmetz E. J., Spear P., Platt T. Specificity and efficiency of rho-factor helicase activity depends on magnesium concentration and energy coupling to NTP hydrolysis. J Biol Chem. 1990 Apr 5;265(10):5440–5447. [PubMed] [Google Scholar]
  4. Dombroski A. J., Brennan C. A., Spear P., Platt T. Site-directed alterations in the ATP-binding domain of rho protein affect its activities as a termination factor. J Biol Chem. 1988 Dec 15;263(35):18802–18809. [PubMed] [Google Scholar]
  5. Dombroski A. J., LaDine J. R., Cross R. L., Platt T. The ATP binding site on rho protein. Affinity labeling of Lys181 by pyridoxal 5'-diphospho-5'-adenosine. J Biol Chem. 1988 Dec 15;263(35):18810–18815. [PubMed] [Google Scholar]
  6. Dombroski A. J., Platt T. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2538–2542. doi: 10.1073/pnas.85.8.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engel D., Richardson J. P. Conformational alterations of transcription termination protein rho induced by ATP and by RNA. Nucleic Acids Res. 1984 Oct 11;12(19):7389–7400. doi: 10.1093/nar/12.19.7389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finger L. R., Richardson J. P. Stabilization of the hexameric form of Escherichia coli protein rho under ATP hydrolysis conditions. J Mol Biol. 1982 Mar 25;156(1):203–219. doi: 10.1016/0022-2836(82)90467-3. [DOI] [PubMed] [Google Scholar]
  9. Galley W. C., Bouvier M., Clas S. D., Brown G. R., St-Pierre L. E. A simplified analysis of Scatchard plots for systems with two interacting binding sites. Biopolymers. 1988 Jan;27(1):79–86. doi: 10.1002/bip.360270106. [DOI] [PubMed] [Google Scholar]
  10. Galluppi G. R., Richardson J. P. ATP-induced changes in the binding of RNA synthesis termination protein Rho to RNA. J Mol Biol. 1980 Apr 15;138(3):513–539. doi: 10.1016/s0022-2836(80)80016-7. [DOI] [PubMed] [Google Scholar]
  11. Geiselmann J., Seifried S. E., Yager T. D., Liang C., von Hippel P. H. Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. Biochemistry. 1992 Jan 14;31(1):121–132. doi: 10.1021/bi00116a018. [DOI] [PubMed] [Google Scholar]
  12. Geiselmann J., Yager T. D., Gill S. C., Calmettes P., von Hippel P. H. Physical properties of the Escherichia coli transcription termination factor rho. 1. Association states and geometry of the rho hexamer. Biochemistry. 1992 Jan 14;31(1):111–121. doi: 10.1021/bi00116a017. [DOI] [PubMed] [Google Scholar]
  13. Geiselmann J., Yager T. D., von Hippel P. H. Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA. Protein Sci. 1992 Jul;1(7):861–873. doi: 10.1002/pro.5560010704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gogol E. P., Seifried S. E., von Hippel P. H. Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies. J Mol Biol. 1991 Oct 20;221(4):1127–1138. doi: 10.1016/0022-2836(91)90923-t. [DOI] [PubMed] [Google Scholar]
  15. Howlett G. J., Yeh E., Schachman H. K. Protein-ligand binding studies with a table-top, air-driven high-speed centrifuge. Arch Biochem Biophys. 1978 Oct;190(2):808–819. doi: 10.1016/0003-9861(78)90341-7. [DOI] [PubMed] [Google Scholar]
  16. Lowery C., Richardson J. P. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesi termination factor p. I. Enzymatic properties and effects of inhibitors. J Biol Chem. 1977 Feb 25;252(4):1375–1380. [PubMed] [Google Scholar]
  17. Richardson J. P., Ruteshouser E. C. rho factor-dependent transcription termination. Interference by a mutant rho. J Mol Biol. 1986 Jun 5;189(3):413–419. doi: 10.1016/0022-2836(86)90313-x. [DOI] [PubMed] [Google Scholar]
  18. Seifried S. E., Bjornson K. P., von Hippel P. H. Structure and assembly of the Escherichia coli transcription termination factor rho and its interactions with RNA. II. Physical chemical studies. J Mol Biol. 1991 Oct 20;221(4):1139–1151. doi: 10.1016/0022-2836(91)90924-u. [DOI] [PubMed] [Google Scholar]
  19. Stitt B. L. Escherichia coli transcription termination protein rho has three hydrolytic sites for ATP. J Biol Chem. 1988 Aug 15;263(23):11130–11137. [PubMed] [Google Scholar]
  20. Stitt B. L., Webb M. R. Absence of a phosphorylated intermediate during ATP hydrolysis by Escherichia coli transcription termination protein rho. J Biol Chem. 1986 Dec 5;261(34):15906–15909. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES