Abstract
The results of two 30-ps molecular dynamics simulations of the trp repressor and trp aporepressor proteins are presented in this paper. The simulations were obtained using the AMBER molecular mechanical force field and in both simulations a 6-A shell of TIP3P waters surrounded the proteins. The trp repressor protein is a DNA-binding regulatory protein and it utilizes a helix-turn-helix (D helix-turn-E helix) motif to interact with DNA. The trp aporepressor, lacking two molecules of the L-tryptophan corepressor, cannot bind specifically to DNA. Our simulations show that the N- and C-termini and the residues in and near the helix-turn-helix motifs are the most mobile regions of the proteins, in agreement with the X-ray crystallographic studies. Our simulations also find increased mobility of the residues in the turn-D helix-turn regions of the proteins. We find the average distance separating the DNA-binding motifs to be larger in the repressor as compared to the aporepressor. In addition to examining the protein residue fluctuations and deviations with respect to X-ray structures, we have also focused on backbone dihedral angles and corepressor hydrogen-bonding patterns in this paper.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrowsmith C. H., Carey J., Treat-Clemons L., Jardetzky O. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding. Biochemistry. 1989 May 2;28(9):3875–3879. doi: 10.1021/bi00435a037. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Carey J. trp repressor arms contribute binding energy without occupying unique locations on DNA. J Biol Chem. 1989 Feb 5;264(4):1941–1945. [PubMed] [Google Scholar]
- Guenot J., Kollman P. A. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor. Protein Sci. 1992 Sep;1(9):1185–1205. doi: 10.1002/pro.5560010912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunsalus R. P., Yanofsky C. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7117–7121. doi: 10.1073/pnas.77.12.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joachimiak A., Schevitz R. W., Kelley R. L., Yanofsky C., Sigler P. B. Functional inferences from crystals of Escherichia coli trp repressor. J Biol Chem. 1983 Oct 25;258(20):12641–12643. [PubMed] [Google Scholar]
- Klig L. S., Carey J., Yanofsky C. trp repressor interactions with the trp aroH and trpR operators. Comparison of repressor binding in vitro and repression in vivo. J Mol Biol. 1988 Aug 20;202(4):769–777. doi: 10.1016/0022-2836(88)90557-8. [DOI] [PubMed] [Google Scholar]
- Komeiji Y., Uebayasi M., Someya J., Yamato I. Molecular dynamics simulation of trp-aporepressor in a solvent. Protein Eng. 1991 Dec;4(8):871–875. doi: 10.1093/protein/4.8.871. [DOI] [PubMed] [Google Scholar]
- Lawson C. L., Sigler P. B. The structure of trp pseudorepressor at 1.65A shows why indole propionate acts as a trp 'inducer'. Nature. 1988 Jun 30;333(6176):869–871. doi: 10.1038/333869a0. [DOI] [PubMed] [Google Scholar]
- Lawson C. L., Zhang R. G., Schevitz R. W., Otwinowski Z., Joachimiak A., Sigler P. B. Flexibility of the DNA-binding domains of trp repressor. Proteins. 1988;3(1):18–31. doi: 10.1002/prot.340030103. [DOI] [PubMed] [Google Scholar]
- Levitt M., Sharon R. Accurate simulation of protein dynamics in solution. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7557–7561. doi: 10.1073/pnas.85.20.7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
- Marmorstein R. Q., Sigler P. B. Stereochemical effects of L-tryptophan and its analogues on trp repressor's affinity for operator-DNA. J Biol Chem. 1989 Jun 5;264(16):9149–9154. [PubMed] [Google Scholar]
- Otwinowski Z., Schevitz R. W., Zhang R. G., Lawson C. L., Joachimiak A., Marmorstein R. Q., Luisi B. F., Sigler P. B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. doi: 10.1038/335321a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
- Rose J. K., Squires C. L., Yanofsky C., Yang H. L., Zubay G. Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan. Nat New Biol. 1973 Oct 3;245(144):133–137. doi: 10.1038/newbio245133a0. [DOI] [PubMed] [Google Scholar]
- Schevitz R. W., Otwinowski Z., Joachimiak A., Lawson C. L., Sigler P. B. The three-dimensional structure of trp repressor. 1985 Oct 31-Nov 6Nature. 317(6040):782–786. doi: 10.1038/317782a0. [DOI] [PubMed] [Google Scholar]
- Zhang R. G., Joachimiak A., Lawson C. L., Schevitz R. W., Otwinowski Z., Sigler P. B. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity. Nature. 1987 Jun 18;327(6123):591–597. doi: 10.1038/327591a0. [DOI] [PubMed] [Google Scholar]
- Zurawski G., Gunsalus R. P., Brown K. D., Yanofsky C. Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli. J Mol Biol. 1981 Jan 5;145(1):47–73. doi: 10.1016/0022-2836(81)90334-x. [DOI] [PubMed] [Google Scholar]