Abstract
A computer algorithm is described that utilizes both Edman and mass spectrometric data for simultaneous determination of the amino acid sequences of several peptides in a mixture. Gas phase sequencing of a peptide mixture results in a list of observed amino acids for each cycle of Edman degradation, which by itself may not be informative and typically requires reanalysis following additional chromatographic steps. Tandem mass spectrometry, on the other hand, has a proven ability to analyze sequences of peptides present in mixtures. However, mass spectrometric data may lack a complete set of sequence-defining fragment ions, so that more than one possible sequence may account for the observed fragment ions. A combination of the two types of data reduces the ambiguity inherent in each. The algorithm first utilizes the Edman data to determine all hypothetical sequences with a calculated mass equal to the observed mass of one of the peptides present in the mixture. These sequences are then assigned figures of merit according to how well each of them accounts for the fragment ions in the tandem mass spectrum of that peptide. The program was tested on tryptic and chymotryptic peptides from hen lysozyme, and the results are compared with those of another computer program that uses only mass spectral data for peptide sequencing. In order to assess the utility of this method the program is tested using simulated mixtures of varying complexity and tandem mass spectra of varying quality.
Full Text
The Full Text of this article is available as a PDF (862.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 1990;193:455–479. doi: 10.1016/0076-6879(90)93433-l. [DOI] [PubMed] [Google Scholar]
- Covey T. R., Bonner R. F., Shushan B. I., Henion J. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom. 1988 Nov;2(11):249–256. doi: 10.1002/rcm.1290021111. [DOI] [PubMed] [Google Scholar]
- Griffin P. R., Kumar S., Shabanowitz J., Charbonneau H., Namkung P. C., Walsh K. A., Hunt D. F., Petra P. H. The amino acid sequence of the sex steroid-binding protein of rabbit serum. J Biol Chem. 1989 Nov 15;264(32):19066–19075. [PubMed] [Google Scholar]
- Hunt D. F., Yates J. R., 3rd, Shabanowitz J., Winston S., Hauer C. R. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233–6237. doi: 10.1073/pnas.83.17.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. S., Biemann K. Computer program (SEQPEP) to aid in the interpretation of high-energy collision tandem mass spectra of peptides. Biomed Environ Mass Spectrom. 1989 Nov;18(11):945–957. doi: 10.1002/bms.1200181102. [DOI] [PubMed] [Google Scholar]
- Matsuo T., Matsuda H., Katakuse I. Computer program PAAS for the estimation of possible amino acid sequence of peptides. Biomed Mass Spectrom. 1981 Apr;8(4):137–143. doi: 10.1002/bms.1200080402. [DOI] [PubMed] [Google Scholar]
- Walsh K. A., Ericsson L. H., Parmelee D. C., Titani K. Advances in protein sequencing. Annu Rev Biochem. 1981;50:261–284. doi: 10.1146/annurev.bi.50.070181.001401. [DOI] [PubMed] [Google Scholar]
