Abstract
The preferential interactions of bovine serum albumin, lysozyme, chymotrypsinogen, ribonuclease A, and beta-lactoglobulin with polyethylene glycols (PEGs) of molecular weight 200-6,000 have been measured by dialysis equilibrium coupled with high precision densimetry. All the proteins were found to be preferentially hydrated in all the PEGs, and the magnitude of the preferential hydration increased with increasing PEG size for each protein. The change in the chemical potentials of the proteins with the addition of the PEGs had highly positive values, indicating a strong thermodynamic destabilization of the system by the PEGs. A viscosity study of the PEGs showed them to be randomly coiled polymers, as their radii of gyration were related to the molecular weight by Rg = aM0.55. The thickness of the effective shell impenetrable to PEG around protein molecules, calculated from the preferential hydration, was found to vary with PEG molecular weight in similar fashion as the PEG radius of gyration, supporting the proposal (Arakawa, T. & Timasheff, S.N., 1985a, Biochemistry 24, 6756-6762) that the preferential exclusion of PEGs from proteins is due principally to the steric exclusion of PEG from the protein domain, although favorable interactions with protein surface residues, in particular nonpolar ones, may compete with the exclusion. These thermodynamically unfavorable preferential exclusion interactions lead to the action of PEGs as precipitants, although they may destabilize protein structure at higher temperatures.
Full Text
The Full Text of this article is available as a PDF (977.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson E., Hahn-Hägerdal B. Enzyme action in polymer and salt solutions. I. Stability of penicillin acylase in poly(ethylene glycol) and potassium phosphate solutions in relation to water activity. Biochim Biophys Acta. 1987 Apr 30;912(3):317–324. doi: 10.1016/0167-4838(87)90034-3. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Bhat R., Timasheff S. N. Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system. Biochemistry. 1990 Feb 20;29(7):1914–1923. doi: 10.1021/bi00459a036. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Bhat R., Timasheff S. N. Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry. 1990 Feb 20;29(7):1924–1931. doi: 10.1021/bi00459a037. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Timasheff S. N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 1982 Dec 7;21(25):6545–6552. doi: 10.1021/bi00268a034. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Timasheff S. N. The stabilization of proteins by osmolytes. Biophys J. 1985 Mar;47(3):411–414. doi: 10.1016/S0006-3495(85)83932-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atha D. H., Ingham K. C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem. 1981 Dec 10;256(23):12108–12117. [PubMed] [Google Scholar]
- Back J. F., Oakenfull D., Smith M. B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 1979 Nov 13;18(23):5191–5196. doi: 10.1021/bi00590a025. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Hunt L. The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. J Am Chem Soc. 1967 Sep 13;89(19):4826–4838. doi: 10.1021/ja00995a002. [DOI] [PubMed] [Google Scholar]
- Bull H. B., Breese K. Protein hydration. I. Binding sites. Arch Biochem Biophys. 1968 Nov;128(2):488–496. doi: 10.1016/0003-9861(68)90055-6. [DOI] [PubMed] [Google Scholar]
- CASASSA E. F., EISENBERG H. THERMODYNAMIC ANALYSIS OF MULTICOMPONENT SOLUTIONS. Adv Protein Chem. 1964;19:287–395. doi: 10.1016/s0065-3233(08)60191-6. [DOI] [PubMed] [Google Scholar]
- Gekko K., Morikawa T. Thermodynamics of polyol-induced thermal stabilization of chymotrypsinogen. J Biochem. 1981 Jul;90(1):51–60. doi: 10.1093/oxfordjournals.jbchem.a133469. [DOI] [PubMed] [Google Scholar]
- Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
- Jackson W. M., Brandts J. F. Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. Biochemistry. 1970 May 26;9(11):2294–2301. doi: 10.1021/bi00813a011. [DOI] [PubMed] [Google Scholar]
- Kuntz I. D. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J Am Chem Soc. 1971 Jan 27;93(2):516–518. doi: 10.1021/ja00731a037. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Gekko K., Timasheff S. N. Measurements of preferential solvent interactions by densimetric techniques. Methods Enzymol. 1979;61:26–49. doi: 10.1016/0076-6879(79)61005-4. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Lee L. L. Interaction of calf brain tubulin with poly(ethylene glycols). Biochemistry. 1979 Nov 27;18(24):5518–5526. doi: 10.1021/bi00591a040. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Lee L. L. Preferential solvent interactions between proteins and polyethylene glycols. J Biol Chem. 1981 Jan 25;256(2):625–631. [PubMed] [Google Scholar]
- Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Timasheff S. N. The stabilization of proteins by sucrose. J Biol Chem. 1981 Jul 25;256(14):7193–7201. [PubMed] [Google Scholar]
- Lee L. L., Lee J. C. Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry. 1987 Dec 1;26(24):7813–7819. doi: 10.1021/bi00398a042. [DOI] [PubMed] [Google Scholar]
- McPherson A., Jr Crystallization of proteins from polyethylene glycol. J Biol Chem. 1976 Oct 25;251(20):6300–6303. [PubMed] [Google Scholar]
- McPherson A. Use of polyethylene glycol in the crystallization of macromolecules. Methods Enzymol. 1985;114:120–125. doi: 10.1016/0076-6879(85)14008-5. [DOI] [PubMed] [Google Scholar]
- Noelken M. E., Timasheff S. N. Preferential solvation of bovine serum albumin in aqueous guanidine hydrochloride. J Biol Chem. 1967 Nov 10;242(21):5080–5085. [PubMed] [Google Scholar]
- Pittz E. P., Bello J. Studies on bovine pancreatic ribonuclease A and model compounds in aqueous 2-methyl-2,4-pentanediol. I. Amino acid solubility, thermal reversibility of ribonuclease A, and preferential hydration of ribonuclease A crystals. Arch Biochem Biophys. 1971 Oct;146(2):513–524. doi: 10.1016/0003-9861(71)90156-1. [DOI] [PubMed] [Google Scholar]
- SOPHIANOPOULOS A. J., RHODES C. K., HOLCOMB D. N., VAN HOLDE K. E. Physical studies of lysozyme. I. Characterization. J Biol Chem. 1962 Apr;237:1107–1112. [PubMed] [Google Scholar]
- Welte W., Leonhard M., Diederichs K., Weltzien H. U., Restall C., Hall C., Chapman D. Stabilization of detergent-solubilized Ca2+-ATPase by poly(ethylene glycol). Biochim Biophys Acta. 1989 Sep 4;984(2):193–199. doi: 10.1016/0005-2736(89)90216-2. [DOI] [PubMed] [Google Scholar]
