Abstract
R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
- Barford D., Johnson L. N. The molecular mechanism for the tetrameric association of glycogen phosphorylase promoted by protein phosphorylation. Protein Sci. 1992 Apr;1(4):472–493. doi: 10.1002/pro.5560010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barford D., Schwabe J. W., Oikonomakos N. G., Acharya K. R., Hajdu J., Papageorgiou A. C., Martin J. L., Knott J. C., Vasella A., Johnson L. N. Channels at the catalytic site of glycogen phosphorylase b: binding and kinetic studies with the beta-glycosidase inhibitor D-gluconohydroximo-1,5-lactone N-phenylurethane. Biochemistry. 1988 Sep 6;27(18):6733–6741. doi: 10.1021/bi00418a014. [DOI] [PubMed] [Google Scholar]
- Bello J., Nowoswiat E. F. The activity of crystalline ribonuclease A. Biochim Biophys Acta. 1965 Aug 24;105(2):325–332. doi: 10.1016/s0926-6593(65)80156-4. [DOI] [PubMed] [Google Scholar]
- Cohen P., Duewer T., Fischer E. H. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry. 1971 Jul 6;10(14):2683–2694. doi: 10.1021/bi00790a005. [DOI] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- Dombrádi V. Structural aspects of the catalytic and regulatory function of glycogen phosphorylase. Int J Biochem. 1981;13(2):125–139. doi: 10.1016/0020-711x(81)90147-6. [DOI] [PubMed] [Google Scholar]
- Engers H. D., Madsen N. B. The effect of anions on the activity of phosphorylase b. Biochem Biophys Res Commun. 1968 Oct 10;33(1):49–54. doi: 10.1016/0006-291x(68)90253-2. [DOI] [PubMed] [Google Scholar]
- Fasold H., Ortanderl F., Huber R., Bartels K., Schwager P. Crystallization and crystallographic data of rabbit muscle phosphorylase a and b. FEBS Lett. 1972 Mar 15;21(2):229–232. doi: 10.1016/0014-5793(72)80143-1. [DOI] [PubMed] [Google Scholar]
- Graves D. J., Mann S. A., Philip G., Oliveira R. J. A probe into the catalytic activity and subunit assembly of glycogen phosphorylase. Desensitization of allosteric control by limited tryptic digestion. J Biol Chem. 1968 Dec 10;243(23):6090–6098. [PubMed] [Google Scholar]
- HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajdu J., Acharya K. R., Stuart D. I., McLaughlin P. J., Barford D., Oikonomakos N. G., Klein H., Johnson L. N. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 1987 Feb;6(2):539–546. doi: 10.1002/j.1460-2075.1987.tb04786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5'-adenylic acid to muscle phosphorylase a. Biochemistry. 1967 Dec;6(12):3695–3710. doi: 10.1021/bi00864a012. [DOI] [PubMed] [Google Scholar]
- Huang C. Y., Graves D. J. Correlation between subunit interactions and enzymatic activity of phosphorylase a. Method for determining equilibrium constants from initial rate measurements. Biochemistry. 1970 Feb 3;9(3):660–671. doi: 10.1021/bi00805a028. [DOI] [PubMed] [Google Scholar]
- Johnson L. N., Barford D. Glycogen phosphorylase. The structural basis of the allosteric response and comparison with other allosteric proteins. J Biol Chem. 1990 Feb 15;265(5):2409–2412. [PubMed] [Google Scholar]
- Johnson L. N., Madsen N. B., Mosley J., Wilson K. S. The crystal structure of phosphorylase beta at 6 A resolution. J Mol Biol. 1974 Dec 25;90(4):703–717. doi: 10.1016/0022-2836(74)90534-8. [DOI] [PubMed] [Google Scholar]
- KALLOS J. CATALYTIC ACTIVITY OF CHYMOTRYPSIN IN CRYSTALLINE STATE. Biochim Biophys Acta. 1964 Aug 26;89:364–366. doi: 10.1016/0926-6569(64)90230-5. [DOI] [PubMed] [Google Scholar]
- Kastenschmidt L. L., Kastenschmidt J., Helmreich E. Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Oct;7(10):3590–3608. doi: 10.1021/bi00850a037. [DOI] [PubMed] [Google Scholar]
- Kasvinsky P. J., Madsen N. B. Activity of glycogen phosphorylase in the crystalline state. J Biol Chem. 1976 Nov 10;251(21):6852–6859. [PubMed] [Google Scholar]
- Kasvinsky P. J., Madsen N. B., Fletterick R. J., Sygusch J. X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J Biol Chem. 1978 Feb 25;253(4):1290–1296. [PubMed] [Google Scholar]
- Leatherbarrow R. J. Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci. 1990 Dec;15(12):455–458. doi: 10.1016/0968-0004(90)90295-m. [DOI] [PubMed] [Google Scholar]
- Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C. Sulphate activates phosphorylase b by binding to the Ser (P) site. Biochim Biophys Acta. 1991 Jan 29;1076(2):305–307. doi: 10.1016/0167-4838(91)90282-5. [DOI] [PubMed] [Google Scholar]
- Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C., Xenakis A., Cazianis C. T., Bem F. The ammonium sulfate activation of phosphorylase b. FEBS Lett. 1990 Feb 12;261(1):23–27. doi: 10.1016/0014-5793(90)80627-u. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Melpidou A. E., Oikonomakos N. G. Effect of glucose-6-P on the catalytic and structural properties of glycogen phosphorylase a. FEBS Lett. 1983 Apr 5;154(1):105–110. doi: 10.1016/0014-5793(83)80884-9. [DOI] [PubMed] [Google Scholar]
- Metzger B., Helmireich E., Glaser L. The mechanism of activation of skeletal muscle phosphorylase A by glycogen. Proc Natl Acad Sci U S A. 1967 Apr;57(4):994–1001. doi: 10.1073/pnas.57.4.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozzarelli A., Berni R., Rossi G. L., Vas M., Bartha F., Keleti T. Protein isomerization in the NAD+-dependent activation of beta-(2-furyl)acryloyl-glyceraldehyde-3-phosphate dehydrogenase in the crystal. J Biol Chem. 1982 Jun 25;257(12):6739–6744. [PubMed] [Google Scholar]
- Muñoz F., Valles M. A., Pocovi M., Echevarria Gorostidi G., Garcia Blanco F. Rate and equilibrium constants of the tetramerization process of phosphorylase b. Influence of AMP and Mg2+. Biophys Chem. 1983 Oct;18(3):249–256. doi: 10.1016/0301-4622(83)80038-6. [DOI] [PubMed] [Google Scholar]
- Sluyterman L. A., de Graaf M. J. The activity of papain in the crystalline state. Biochim Biophys Acta. 1969 Feb 11;171(2):277–287. doi: 10.1016/0005-2744(69)90161-2. [DOI] [PubMed] [Google Scholar]
- Sotiroudis T. G., Oikonomakos N. G., Evangelopoulos A. E. Effect of sulfated polysaccharides and sulfate anions on the AMP-dependent activity of phosphorylase b. Biochem Biophys Res Commun. 1979 Sep 12;90(1):234–239. doi: 10.1016/0006-291x(79)91615-2. [DOI] [PubMed] [Google Scholar]
- Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
- Sprang S. R., Withers S. G., Goldsmith E. J., Fletterick R. J., Madsen N. B. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 1991 Nov 29;254(5036):1367–1371. doi: 10.1126/science.1962195. [DOI] [PubMed] [Google Scholar]
- Sprang S., Fletterick R. J. The structure of glycogen phosphorylase alpha at 2.5 A resolution. J Mol Biol. 1979 Jul 5;131(3):523–551. doi: 10.1016/0022-2836(79)90006-8. [DOI] [PubMed] [Google Scholar]
- WANG J. H., SHONKA M. L., GRAVES D. J. THE EFFECT OF GLUCOSE ON THE SEDIMENTATION AND CATALYTIC ACTIVITY OF GLYCOGEN PHOSPHORYLASE. Biochem Biophys Res Commun. 1965 Jan 4;18:131–135. doi: 10.1016/0006-291x(65)90895-8. [DOI] [PubMed] [Google Scholar]
- Wang J. H., Kwok S. C., Wirch E., Suzuki I. Distinct AMP binding sites in glycogen phosphorylase b as revealed by calorimetric studies. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1340–1347. doi: 10.1016/0006-291x(70)90013-6. [DOI] [PubMed] [Google Scholar]
- Weber I. T., Johnson L. N., Wilson K. S., Yeates D. G., Wild D. L., Jenkins J. A. Crystallographic studies on the activity of glycogen phosphorylase b. Nature. 1978 Aug 3;274(5670):433–437. doi: 10.1038/274433a0. [DOI] [PubMed] [Google Scholar]
- Withers S. G., Sykes B. D., Madsen N. B., Kasvinsky P. J. Identical structural changes induced in glycogen phosphorylase by two nonexclusive allosteric inhibitors. Biochemistry. 1979 Nov 27;18(24):5342–5348. doi: 10.1021/bi00591a013. [DOI] [PubMed] [Google Scholar]
