Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Sep;1(9):1112–1122. doi: 10.1002/pro.5560010905

Control of phosphorylase b conformation by a modified cofactor: crystallographic studies on R-state glycogen phosphorylase reconstituted with pyridoxal 5'-diphosphate.

D D Leonidas 1, N G Oikonomakos 1, A C Papageorgiou 1, K R Acharya 1, D Barford 1, L N Johnson 1
PMCID: PMC2142186  PMID: 1304390

Abstract

Previous crystallographic studies on glycogen phosphorylase have described the different conformational states of the protein (T and R) that represent the allosteric transition and have shown how the properties of the 5'-phosphate group of the cofactor pyridoxal phosphate are influenced by these conformational states. The present work reports a study on glycogen phosphorylase b (GPb) complexed with a modified cofactor, pyridoxal 5'-diphosphate (PLPP), in place of the natural cofactor. Solution studies (Withers, S.G., Madsen, N.B., & Sykes, B.D., 1982, Biochemistry 21, 6716-6722) have shown that PLPP promotes R-state properties of the enzyme indicating that the cofactor can influence the conformational state of the protein. GPb complexed with pyridoxal 5'-diphosphate (PLPP) has been crystallized in the presence of IMP and ammonium sulfate in the monoclinic R-state crystal form and the structure refined from X-ray data to 2.8 A resolution to a crystallographic R value of 0.21. The global tertiary and quaternary structure in the vicinity of the Ser 14 and the IMP sites are nearly identical to those observed for the R-state GPb-AMP complex. At the catalytic site the second phosphate of PLPP is accommodated with essentially no change in structure from the R-state structure and is involved in interactions with the side chains of two lysine residues (Lys 568 and Lys 574) and the main chain nitrogen of Arg 569. Superposition of the T-state structure shows that were the PLPP to be incorporated into the T-state structure there would be a close contact with the 280s loop (residues 282-285) that would encourage the T to R allosteric transition. The second phosphate of the PLPP occupies a site that is distinct from other dianionic binding sites that have been observed for glucose-1-phosphate and sulfate (in the R state) and for heptulose-2-phosphate (in the T state). The results indicate mobility in the dianion recognition site, and the precise position is dependent on other linkages to the dianion. In the modified cofactor the second phosphate site is constrained by the covalent link to the first phosphate of PLPP. The observed position in the crystal suggests that it is too far from the substrate site to represent a site for catalysis.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARANOWSKI T., ILLINGWORTH B., BROWN D. H., CORI C. F. The isolation of pyridoxal-5-phosphate from crystalline muscle phosphorylase. Biochim Biophys Acta. 1957 Jul;25(1):16–21. doi: 10.1016/0006-3002(57)90410-9. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Hu S. H., Johnson L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol. 1991 Mar 5;218(1):233–260. doi: 10.1016/0022-2836(91)90887-c. [DOI] [PubMed] [Google Scholar]
  3. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  4. Barford D., Johnson L. N. The molecular mechanism for the tetrameric association of glycogen phosphorylase promoted by protein phosphorylation. Protein Sci. 1992 Apr;1(4):472–493. doi: 10.1002/pro.5560010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Black W. J., Wang J. H. Studies on the allosteric activation of glycogen phosphorylase b by Nucleotides. I. Activation of phosphorylase b by inosine monophosphate. J Biol Chem. 1968 Nov 25;243(22):5892–5898. [PubMed] [Google Scholar]
  6. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  7. Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
  8. Feldmann K., Hull W. E. 31P nuclear magnetic resonance studies of glycogen phosphorylase from rabbit skeletal muscle: ionization states of pyridoxal 5'-phosphate. Proc Natl Acad Sci U S A. 1977 Mar;74(3):856–860. doi: 10.1073/pnas.74.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukui T., Tagaya M., Takagi M., Shimomura S. Role of pyridoxal 5'-phosphate in the catalytic mechanism of glycogen phosphorylase. Prog Clin Biol Res. 1984;144A:161–170. [PubMed] [Google Scholar]
  10. Griffiths J. R., Dwek R. A., Radda G. K. Conformational changes in glycogen phosphorylase studied with a spin-label probe. Eur J Biochem. 1976 Jan 2;61(1):237–242. doi: 10.1111/j.1432-1033.1976.tb10016.x. [DOI] [PubMed] [Google Scholar]
  11. Hajdu J., Acharya K. R., Stuart D. I., McLaughlin P. J., Barford D., Oikonomakos N. G., Klein H., Johnson L. N. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 1987 Feb;6(2):539–546. doi: 10.1002/j.1460-2075.1987.tb04786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hedrick J. L., Shaltliel S., Fischer E. H. On the role of pyridoxal 5'-phosphate in phosphorylase. 3. Physicochemical properties and reconstitution of apophosphorylase b. Biochemistry. 1966 Jun;5(6):2117–2125. doi: 10.1021/bi00870a045. [DOI] [PubMed] [Google Scholar]
  13. Helmreich E. J., Klein H. W. The role of pyridoxal phosphate in the catalysis of glycogen phosphorylases. Angew Chem Int Ed Engl. 1980;19(6):441–445. doi: 10.1002/anie.198004411. [DOI] [PubMed] [Google Scholar]
  14. Johnson L. N., Acharya K. R., Jordan M. D., McLaughlin P. J. Refined crystal structure of the phosphorylase-heptulose 2-phosphate-oligosaccharide-AMP complex. J Mol Biol. 1990 Feb 5;211(3):645–661. doi: 10.1016/0022-2836(90)90271-M. [DOI] [PubMed] [Google Scholar]
  15. Kastenschmidt L. L., Kastenschmidt J., Helmreich E. Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Oct;7(10):3590–3608. doi: 10.1021/bi00850a037. [DOI] [PubMed] [Google Scholar]
  16. Klein H. W., Im M. J., Palm D. Mechanism of the phosphorylase reaction. Utilization of D-gluco-hept-1-enitol in the absence of primer. Eur J Biochem. 1986 May 15;157(1):107–114. doi: 10.1111/j.1432-1033.1986.tb09645.x. [DOI] [PubMed] [Google Scholar]
  17. Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C. Sulphate activates phosphorylase b by binding to the Ser (P) site. Biochim Biophys Acta. 1991 Jan 29;1076(2):305–307. doi: 10.1016/0167-4838(91)90282-5. [DOI] [PubMed] [Google Scholar]
  18. Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C., Xenakis A., Cazianis C. T., Bem F. The ammonium sulfate activation of phosphorylase b. FEBS Lett. 1990 Feb 12;261(1):23–27. doi: 10.1016/0014-5793(90)80627-u. [DOI] [PubMed] [Google Scholar]
  19. Martin J. L., Johnson L. N., Withers S. G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry. 1990 Dec 4;29(48):10745–10757. doi: 10.1021/bi00500a005. [DOI] [PubMed] [Google Scholar]
  20. McLaughlin P. J., Stuart D. I., Klein H. W., Oikonomakos N. G., Johnson L. N. Substrate-cofactor interactions for glycogen phosphorylase b: a binding study in the crystal with heptenitol and heptulose 2-phosphate. Biochemistry. 1984 Nov 20;23(24):5862–5873. doi: 10.1021/bi00319a028. [DOI] [PubMed] [Google Scholar]
  21. Melpidou A. E., Oikonomakos N. G. Effect of glucose-6-P on the catalytic and structural properties of glycogen phosphorylase a. FEBS Lett. 1983 Apr 5;154(1):105–110. doi: 10.1016/0014-5793(83)80884-9. [DOI] [PubMed] [Google Scholar]
  22. Oikonomakos N. G., Johnson L. N., Acharya K. R., Stuart D. I., Barford D., Hajdu J., Varvill K. M., Melpidou A. E., Papageorgiou T., Graves D. J. Pyridoxal phosphate site in glycogen phosphorylase b: structure in native enzyme and in three derivatives with modified cofactors. Biochemistry. 1987 Dec 15;26(25):8381–8389. doi: 10.1021/bi00399a053. [DOI] [PubMed] [Google Scholar]
  23. Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
  24. Parrish R. F., Uhing R. J., Graves D. J. Effect of phosphate analogues on the activity of pyridoxal reconstituted glycogen phosphorylase. Biochemistry. 1977 Nov 1;16(22):4824–4831. doi: 10.1021/bi00641a011. [DOI] [PubMed] [Google Scholar]
  25. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  26. Shimomura S., Fukui T. Characterization of the pyridoxal phosphate site in glycogen phosphorylase b from rabbit muscle. Biochemistry. 1978 Dec 12;17(25):5359–5367. doi: 10.1021/bi00618a006. [DOI] [PubMed] [Google Scholar]
  27. Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
  28. Sprang S. R., Madsen N. B., Withers S. G. Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5'-pyrophosphate coenzyme-substrate analog. Protein Sci. 1992 Sep;1(9):1100–1111. doi: 10.1002/pro.5560010904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sprang S. R., Withers S. G., Goldsmith E. J., Fletterick R. J., Madsen N. B. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 1991 Nov 29;254(5036):1367–1371. doi: 10.1126/science.1962195. [DOI] [PubMed] [Google Scholar]
  30. Tagaya M., Fukui T. Catalytic reaction of glycogen phosphorylase reconstituted with a coenzyme-substrate conjugate. J Biol Chem. 1984 Apr 25;259(8):4860–4865. [PubMed] [Google Scholar]
  31. Takagi M., Fukui T., Shimomura S. Catalytic mechanism of glycogen phosphorylase: pyridoxal(5')diphospho(1)-alpha-D-glucose as a transition-state analogue. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3716–3719. doi: 10.1073/pnas.79.12.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Titani K., Koide A., Hermann J., Ericsson L. H., Kumar S., Wade R. D., Walsh K. A., Neurath H., Fischer E. H. Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4762–4766. doi: 10.1073/pnas.74.11.4762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Withers S. G., Madsen N. B., Sykes B. D. Active form of pyridoxal phosphate in glycogen phosphorylase. Phosphorus-31 nuclear magentic resonance investigation. Biochemistry. 1981 Mar 31;20(7):1748–1756. doi: 10.1021/bi00510a007. [DOI] [PubMed] [Google Scholar]
  34. Withers S. G., Madsen N. B., Sykes B. D., Takagi M., Shimomura S., Fukui T. Evidence for direct phosphate-phosphate interaction between pyridoxal phosphate and substrate in the glycogen phosphorylase catalytic mechanism. J Biol Chem. 1981 Nov 10;256(21):10759–10762. [PubMed] [Google Scholar]
  35. Zeppezauer M., Eklund H., Zeppezauer E. S. Micro diffusion cells for the growth of single protein crystals by means of equilibrium dialysis. Arch Biochem Biophys. 1968 Aug;126(2):564–573. doi: 10.1016/0003-9861(68)90443-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES