Abstract
The kinetics of the reverse reaction catalyzed by Escherichia coli phosphofructokinase, i.e., the synthesis of ATP and fructose-6-phosphate from ADP and fructose-1,6-bisphosphate, have been studied at different pH values, from pH 6 to pH 9.2. Hyperbolic saturations of the enzyme are observed for both substrates. The affinity for fructose-1,6-bisphosphate decreases with pH following the ionization of a group with a pK of 6.6, whereas the catalytic rate constant and perhaps the affinity for ADP are controlled by the ionization of a group with a pK of 6. Several arguments show that the pK of 6.6 is probably that of the carboxyl group of Asp 127, whereas the pK of 6 is tentatively attributed to the carboxyl group of Asp 103. The pK of 6.6 is assigned to the carboxyl group of Asp 127 in the free enzyme, and a simple model suggests that the same group would have an abnormally high pK, above 9.6, in the complex between phosphofructokinase and fructose-1,6-bisphosphate. It is proposed that the large pK shift of more than 3 pH units upon binding of fructose-1,6-bisphosphate is due to an electrostatic repulsion that could exist between the 1-phosphate group and the carboxyl group of Asp 127, which are close to each other in the crystal structure of phosphofructokinase (Shirakihara, Y. & Evans, P.R., 1988, J. Mol. Biol. 204, 973-994). The same interpretation would also explain the much higher affinity of the enzyme for fructose-1,6-bisphosphate when Asp 127 is protonated.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (470.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blangy D., Buc H., Monod J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):13–35. doi: 10.1016/0022-2836(68)90051-x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Deville-Bonne D., Bourgain F., Garel J. R. pH dependence of the kinetic properties of allosteric phosphofructokinase from Escherichia coli. Biochemistry. 1991 Jun 11;30(23):5750–5754. doi: 10.1021/bi00237a017. [DOI] [PubMed] [Google Scholar]
- Deville-Bonne D., Le Bras G., Teschner W., Garel J. R. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN. Biochemistry. 1989 Feb 21;28(4):1917–1922. doi: 10.1021/bi00430a073. [DOI] [PubMed] [Google Scholar]
- Hellinga H. W., Evans P. R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987 Jun 4;327(6121):437–439. doi: 10.1038/327437a0. [DOI] [PubMed] [Google Scholar]
- Jarvest R. L., Lowe G., Potter B. V. The stereochemical course of phosphoryl transfer catalysed by Bacillus stearothermophilus and rabbit skeletal-muscle phosphofructokinase with a chiral [16O,17O,18O]phosphate ester. Biochem J. 1981 Nov 1;199(2):427–432. doi: 10.1042/bj1990427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotlarz D., Buc H. Phosphofructokinases from Escherichia coli. Methods Enzymol. 1982;90(Pt E):60–70. doi: 10.1016/s0076-6879(82)90107-0. [DOI] [PubMed] [Google Scholar]
- Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]