Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Mar;1(3):378–395. doi: 10.1002/pro.5560010310

Quantitative analysis of cyclic beta-turn models.

A Perczel 1, G D Fasman 1
PMCID: PMC2142200  PMID: 1304345

Abstract

The beta-turn is a frequently found structural unit in the conformation of globular proteins. Although the circular dichroism (CD) spectra of the alpha-helix and beta-pleated sheet are well defined, there remains some ambiguity concerning the pure component CD spectra of the different types of beta-turns. Recently, it has been reported (Hollósi, M., Kövér, K.E., Holly, S., Radics, L., & Fasman, G.D., 1987, Biopolymers 26, 1527-1572; Perczel, A., Hollósi, M., Foxman, B.M., & Fasman, G.D., 1991a, J. Am. Chem. Soc. 113, 9772-9784) that some pseudohexapeptides (e.g., the cyclo[(delta)Ava-Gly-Pro-Aaa-Gly] where Aaa = Ser, Ser(OtBu), or Gly) in many solvents adopt a conformational mixture of type I and the type II beta-turns, although the X-ray-determined conformation was an ideal type I beta-turn. In addition to these pseudohexapeptides, conformational analysis was also carried out on three pseudotetrapeptides and three pseudooctapeptides. The target of the conformation analysis reported herein was to determine whether the ring stress of the above beta-turn models has an influence on their conformational properties. Quantitative nuclear Overhauser effect (NOE) measurements yielded interproton distances. The conformational average distances so obtained were interpreted utilizing molecular dynamics (MD) simulations to yield the conformational percentages. These conformational ratios were correlated with the conformational weights obtained by quantitative CD analysis of the same compounds. The pure component CD curves of type I and type II beta-turns were also obtained, using a recently developed algorithm (Perczel, A., Tusnády, G., Hollósi, M., & Fasman, G.D., 1991b, Protein Eng. 4(6), 669-679). For the first time the results of a CD deconvolution, based on the CD spectra of 14 beta-turn models, were assigned by quantitative NOE results. The NOE experiments confirmed the ratios of the component curves found for the two major beta-turns by CD analysis. These results can now be used to enhance the conformational determination of globular proteins on the basis of their CD spectra.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson G. W., Zimmerman J. E., Callahan F. M. A reinvestigation of the mixed carbonic anhydride method of peptide synthesis. J Am Chem Soc. 1967 Sep 13;89(19):5012–5017. doi: 10.1021/ja00995a032. [DOI] [PubMed] [Google Scholar]
  2. Aubry A., Ghermani N., Marraud M. Backbone side chain interactions in peptides. I. Crystal structures of model dipeptides with the Pro-Ser sequence. Int J Pept Protein Res. 1984 Feb;23(2):113–122. [PubMed] [Google Scholar]
  3. Avignon M., Garrigou-Lagrange C., Bothorel P. Conformational analysis of dipeptides in aqueous solution. II. Molecular structure of glycine and alanine dipeptides by depolarized Rayleigh scattering and laser Raman spectroscopy. Biopolymers. 1973;12(7):1651–1669. doi: 10.1002/bip.1973.360120716. [DOI] [PubMed] [Google Scholar]
  4. Bandekar J., Evans D. J., Krimm S., Leach S. J., Lee S., McQuie J. R., Minasian E., Némethy G., Pottle M. S., Scheraga H. A. Conformations of cyclo(L-alanyl-L-alanyl-epsilon-aminocaproyl) and of cyclo(L-alanyl-D-alanyl-epsilon-aminocaproyl); cyclized dipeptide models for specific types of beta-bends. Int J Pept Protein Res. 1982 Feb;19(2):187–205. doi: 10.1111/j.1399-3011.1982.tb02608.x. [DOI] [PubMed] [Google Scholar]
  5. Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
  7. Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
  8. Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
  9. Gierasch L. M., Deber C. M., Madison V., Niu C. H., Blout E. R. Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred beta-turn conformers and implications for beta turns in proteins. Biochemistry. 1981 Aug 4;20(16):4730–4738. doi: 10.1021/bi00519a032. [DOI] [PubMed] [Google Scholar]
  10. Hollosi M., Perczel A., Fasman G. D. Cooperativity of carbohydrate moiety orientation and beta-turn stability is determined by intramolecular hydrogen bonds in protected glycopeptide models. Biopolymers. 1990 Oct-Nov;29(12-13):1549–1564. doi: 10.1002/bip.360291206. [DOI] [PubMed] [Google Scholar]
  11. Hollośi M., Kawai M., Fasman G. D. Studies on proline-containing tetrapeptide models of beta-turns. Biopolymers. 1985 Jan;24(1):211–242. doi: 10.1002/bip.360240117. [DOI] [PubMed] [Google Scholar]
  12. Hollósi M., Kövér K. E., Holly S., Radics L., Fasman G. D. Beta-turns in bridged proline-containing cyclic peptide models. Biopolymers. 1987 Sep;26(9):1555–1572. doi: 10.1002/bip.360260908. [DOI] [PubMed] [Google Scholar]
  13. Karle I. L. Conformational characteristics of peptides and unanticipated results from crystal structure analyses. Biopolymers. 1989 Jan;28(1):1–14. doi: 10.1002/bip.360280104. [DOI] [PubMed] [Google Scholar]
  14. Koyama Y., Shimanouchi T., Sato M., Tatsuno T. Conformations of model compounds of proteins. II. Infrared spectra of N-acetyl-amino acid methylamides. Biopolymers. 1971 Jun;10(6):1059–1074. doi: 10.1002/bip.360100612. [DOI] [PubMed] [Google Scholar]
  15. Manning M. C., Illangasekare M., Woody R. W. Circular dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta turns. Biophys Chem. 1988 Aug;31(1-2):77–86. doi: 10.1016/0301-4622(88)80011-5. [DOI] [PubMed] [Google Scholar]
  16. Manning M. C., Woody R. W. Theoretical determination of the CD of proteins containing closely packed antiparallel beta-sheets. Biopolymers. 1987 Oct;26(10):1731–1752. doi: 10.1002/bip.360261007. [DOI] [PubMed] [Google Scholar]
  17. Marraud M., Aubry A. Backbone side chain interactions in peptides. II. Solution study of serine-containing model dipeptides. Int J Pept Protein Res. 1984 Feb;23(2):123–133. [PubMed] [Google Scholar]
  18. Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
  19. Smith J. A., Pease L. G. Reverse turns in peptides and proteins. CRC Crit Rev Biochem. 1980;8(4):315–399. doi: 10.3109/10409238009105470. [DOI] [PubMed] [Google Scholar]
  20. Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]
  21. Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of beta-turn in proteins. J Mol Biol. 1988 Sep 5;203(1):221–232. doi: 10.1016/0022-2836(88)90103-9. [DOI] [PubMed] [Google Scholar]
  22. Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES