Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Mar;1(3):401–408. doi: 10.1002/pro.5560010312

An optimization approach to predicting protein structural class from amino acid composition.

C T Zhang 1, K C Chou 1
PMCID: PMC2142205  PMID: 1304347

Abstract

Proteins are generally classified into four structural classes: all-alpha proteins, all-beta proteins, alpha + beta proteins, and alpha/beta proteins. In this article, a protein is expressed as a vector of 20-dimensional space, in which its 20 components are defined by the composition of its 20 amino acids. Based on this, a new method, the so-called maximum component coefficient method, is proposed for predicting the structural class of a protein according to its amino acid composition. In comparison with the existing methods, the new method yields a higher general accuracy of prediction. Especially for the all-alpha proteins, the rate of correct prediction obtained by the new method is much higher than that by any of the existing methods. For instance, for the 19 all-alpha proteins investigated previously by P.Y. Chou, the rate of correct prediction by means of his method was 84.2%, but the correct rate when predicted with the new method would be 100%! Furthermore, the new method is characterized by an explicable physical picture. This is reflected by the process in which the vector representing a protein to be predicted is decomposed into four component vectors, each of which corresponds to one of the norms of the four protein structural classes.

Full Text

The Full Text of this article is available as a PDF (637.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. J., Levy H. R., Moffat K. Crystallization and preliminary x-ray data for glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. J Biol Chem. 1983 May 10;258(9):5867–5868. [PubMed] [Google Scholar]
  2. Barnell W. O., Yi K. C., Conway T. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol. 1990 Dec;172(12):7227–7240. doi: 10.1128/jb.172.12.7227-7240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlacci L., Chou K. C., Maggiora G. M. A heuristic approach to predicting the tertiary structure of bovine somatotropin. Biochemistry. 1991 May 7;30(18):4389–4398. doi: 10.1021/bi00232a004. [DOI] [PubMed] [Google Scholar]
  4. Chou K. C., Carlacci L. Energetic approach to the folding of alpha/beta barrels. Proteins. 1991;9(4):280–295. doi: 10.1002/prot.340090406. [DOI] [PubMed] [Google Scholar]
  5. Chou K. C., Carlacci L. Simulated annealing approach to the study of protein structures. Protein Eng. 1991 Aug;4(6):661–667. doi: 10.1093/protein/4.6.661. [DOI] [PubMed] [Google Scholar]
  6. Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992 Jan 20;223(2):509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
  7. Chou K. C., Némethy G., Pottle M., Scheraga H. A. Energy of stabilization of the right-handed beta alpha beta crossover in proteins. J Mol Biol. 1989 Jan 5;205(1):241–249. doi: 10.1016/0022-2836(89)90378-1. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  9. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  10. Fersht A. R. Conformational equilibria in -and -chymotrypsin. The energetics and importance of the salt bridge. J Mol Biol. 1972 Mar 14;64(2):497–509. doi: 10.1016/0022-2836(72)90513-x. [DOI] [PubMed] [Google Scholar]
  11. Fouts D., Ganguly R., Gutierrez A. G., Lucchesi J. C., Manning J. E. Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with the homologous human gene. Gene. 1988 Mar 31;63(2):261–275. doi: 10.1016/0378-1119(88)90530-6. [DOI] [PubMed] [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Haghighi B., Levy H. R. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Conformational transitions induced by nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and glucose 6-phosphate monitored by fluorescent probes. Biochemistry. 1982 Dec 7;21(25):6421–6428. doi: 10.1021/bi00268a016. [DOI] [PubMed] [Google Scholar]
  14. Hanukoglu I., Gutfinger T. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur J Biochem. 1989 Mar 15;180(2):479–484. doi: 10.1111/j.1432-1033.1989.tb14671.x. [DOI] [PubMed] [Google Scholar]
  15. Ho Y. S., Howard A. J., Crapo J. D. Cloning and sequence of a cDNA encoding rat glucose-6-phosphate dehydrogenase. Nucleic Acids Res. 1988 Aug 11;16(15):7746–7746. doi: 10.1093/nar/16.15.7746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawai H., Kikuchi T., Okamoto Y. A prediction of tertiary structures of peptide by the Monte Carlo simulated annealing method. Protein Eng. 1989 Nov;3(2):85–94. doi: 10.1093/protein/3.2.85. [DOI] [PubMed] [Google Scholar]
  17. Klein P., Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986 Sep;25(9):1659–1672. doi: 10.1002/bip.360250909. [DOI] [PubMed] [Google Scholar]
  18. Klein P. Prediction of protein structural class by discriminant analysis. Biochim Biophys Acta. 1986 Nov 21;874(2):205–215. doi: 10.1016/0167-4838(86)90119-6. [DOI] [PubMed] [Google Scholar]
  19. LaDine J. R., Carlow D., Lee W. T., Cross R. L., Flynn T. G., Levy H. R. Interaction of Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase with pyridoxal 5'-diphospho-5'-adenosine. Affinity labeling of Lys-21 and Lys-343. J Biol Chem. 1991 Mar 25;266(9):5558–5562. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
  22. Levy H. R., Christoff M., Ingulli J., Ho E. M. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: revised kinetic mechanism and kinetics of ATP inhibition. Arch Biochem Biophys. 1983 Apr 15;222(2):473–488. doi: 10.1016/0003-9861(83)90546-5. [DOI] [PubMed] [Google Scholar]
  23. Levy H. R., Daouk G. H. Simultaneous analysis of NAD- and NADP-linked activities of dual nucleotide-specific dehydrogenases. Application to Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase. J Biol Chem. 1979 Jun 10;254(11):4843–4847. [PubMed] [Google Scholar]
  24. Lim V. I. Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J Mol Biol. 1974 Oct 5;88(4):857–872. doi: 10.1016/0022-2836(74)90404-5. [DOI] [PubMed] [Google Scholar]
  25. Merril C. R. Gel-staining techniques. Methods Enzymol. 1990;182:477–488. doi: 10.1016/0076-6879(90)82038-4. [DOI] [PubMed] [Google Scholar]
  26. Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene. 1990 Dec 15;96(2):161–169. doi: 10.1016/0378-1119(90)90248-p. [DOI] [PubMed] [Google Scholar]
  27. Olive C., Geroch M. E., Levy H. R. Glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. Kinetic studies. J Biol Chem. 1971 Apr 10;246(7):2047–2057. [PubMed] [Google Scholar]
  28. Persico M. G., Viglietto G., Martini G., Toniolo D., Paonessa G., Moscatelli C., Dono R., Vulliamy T., Luzzatto L., D'Urso M. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5' non-coding region. Nucleic Acids Res. 1986 Mar 25;14(6):2511–2522. doi: 10.1093/nar/14.6.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poteete A. R., Sun D. P., Nicholson H., Matthews B. W. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991 Feb 5;30(5):1425–1432. doi: 10.1021/bi00219a037. [DOI] [PubMed] [Google Scholar]
  30. Rowley D. L., Wolf R. E., Jr Molecular characterization of the Escherichia coli K-12 zwf gene encoding glucose 6-phosphate dehydrogenase. J Bacteriol. 1991 Feb;173(3):968–977. doi: 10.1128/jb.173.3.968-977.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wada K., Aota S., Tsuchiya R., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2367–2411. doi: 10.1093/nar/18.suppl.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilkinson A. J., Fersht A. R., Blow D. M., Winter G. Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation. Biochemistry. 1983 Jul 19;22(15):3581–3586. doi: 10.1021/bi00284a007. [DOI] [PubMed] [Google Scholar]
  33. Wilson S. R., Cui W. L. Applications of simulated annealing to peptides. Biopolymers. 1990 Jan;29(1):225–235. doi: 10.1002/bip.360290127. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES