Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Mar;1(3):322–328. doi: 10.1002/pro.5560010303

Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases.

B Veerapandian 1, J B Cooper 1, A Sali 1, T L Blundell 1, R L Rosati 1, B W Dominy 1, D B Damon 1, D J Hoover 1
PMCID: PMC2142209  PMID: 1304340

Abstract

We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.

Full Text

The Full Text of this article is available as a PDF (646.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreeva N. S., Zdanov A. S., Gustchina A. E., Fedorov A. A. Structure of ethanol-inhibited porcine pepsin at 2-A resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme. J Biol Chem. 1984 Sep 25;259(18):11353–11365. [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Blundell T. L., Cooper J., Foundling S. I., Jones D. M., Atrash B., Szelke M. On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition-state analogues. Biochemistry. 1987 Sep 8;26(18):5585–5590. doi: 10.1021/bi00392a001. [DOI] [PubMed] [Google Scholar]
  4. Blundell T. L., Jenkins J. A., Sewell B. T., Pearl L. H., Cooper J. B., Tickle I. J., Veerapandian B., Wood S. P. X-ray analyses of aspartic proteinases. The three-dimensional structure at 2.1 A resolution of endothiapepsin. J Mol Biol. 1990 Feb 20;211(4):919–941. doi: 10.1016/0022-2836(90)90084-Y. [DOI] [PubMed] [Google Scholar]
  5. Bott R., Subramanian E., Davies D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry. 1982 Dec 21;21(26):6956–6962. doi: 10.1021/bi00269a052. [DOI] [PubMed] [Google Scholar]
  6. Cooper J. B., Foundling S. I., Blundell T. L., Boger J., Jupp R. A., Kay J. X-ray studies of aspartic proteinase-statine inhibitor complexes. Biochemistry. 1989 Oct 17;28(21):8596–8603. doi: 10.1021/bi00447a049. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. B., Khan G., Taylor G., Tickle I. J., Blundell T. L. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J Mol Biol. 1990 Jul 5;214(1):199–222. doi: 10.1016/0022-2836(90)90156-G. [DOI] [PubMed] [Google Scholar]
  8. Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
  9. Dunn B. M., Jimenez M., Parten B. F., Valler M. J., Rolph C. E., Kay J. A systematic series of synthetic chromophoric substrates for aspartic proteinases. Biochem J. 1986 Aug 1;237(3):899–906. doi: 10.1042/bj2370899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fearon K., Spaltenstein A., Hopkins P. B., Gelb M. H. Fluoro ketone containing peptides as inhibitors of human renin. J Med Chem. 1987 Sep;30(9):1617–1622. doi: 10.1021/jm00392a016. [DOI] [PubMed] [Google Scholar]
  11. Foundling S. I., Cooper J., Watson F. E., Cleasby A., Pearl L. H., Sibanda B. L., Hemmings A., Wood S. P., Blundell T. L., Valler M. J. High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. 1987 May 28-Jun 3Nature. 327(6120):349–352. doi: 10.1038/327349a0. [DOI] [PubMed] [Google Scholar]
  12. Gelb M. H., Svaren J. P., Abeles R. H. Fluoro ketone inhibitors of hydrolytic enzymes. Biochemistry. 1985 Apr 9;24(8):1813–1817. doi: 10.1021/bi00329a001. [DOI] [PubMed] [Google Scholar]
  13. Henderson R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J Mol Biol. 1970 Dec 14;54(2):341–354. doi: 10.1016/0022-2836(70)90434-1. [DOI] [PubMed] [Google Scholar]
  14. Holladay M. W., Salituro F. G., Schmidt P. G., Rich D. H. Pepsin-catalysed addition of water to a ketomethylene peptide isostere: observation of the tetrahedral species by 13C-nuclear-magnetic-resonance spectroscopy. Biochem Soc Trans. 1985 Dec;13(6):1046–1048. doi: 10.1042/bst0131046. [DOI] [PubMed] [Google Scholar]
  15. James M. N., Sielecki A. R. Stereochemical analysis of peptide bond hydrolysis catalyzed by the aspartic proteinase penicillopepsin. Biochemistry. 1985 Jul 2;24(14):3701–3713. doi: 10.1021/bi00335a045. [DOI] [PubMed] [Google Scholar]
  16. James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
  17. James M. N., Sielecki A., Salituro F., Rich D. H., Hofmann T. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6137–6141. doi: 10.1073/pnas.79.20.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mantafounis D., Pitts J. Protein engineering of chymosin; modification of the optimum pH of enzyme catalysis. Protein Eng. 1990 Jul;3(7):605–609. doi: 10.1093/protein/3.7.605. [DOI] [PubMed] [Google Scholar]
  19. Miller M., Jaskólski M., Rao J. K., Leis J., Wlodawer A. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature. 1989 Feb 9;337(6207):576–579. doi: 10.1038/337576a0. [DOI] [PubMed] [Google Scholar]
  20. Moews P. C., Bunn C. W. An x-ray crystallographic study of the rennin-like enzyme of Endothia parasitica. J Mol Biol. 1970 Dec 14;54(2):395–397. doi: 10.1016/0022-2836(70)90439-0. [DOI] [PubMed] [Google Scholar]
  21. Pearl L., Blundell T. The active site of aspartic proteinases. FEBS Lett. 1984 Aug 20;174(1):96–101. doi: 10.1016/0014-5793(84)81085-6. [DOI] [PubMed] [Google Scholar]
  22. Polgár L. The mechanism of action of aspartic proteases involves 'push-pull' catalysis. FEBS Lett. 1987 Jul 13;219(1):1–4. doi: 10.1016/0014-5793(87)81179-1. [DOI] [PubMed] [Google Scholar]
  23. Rich D. H., Bernatowicz M. S., Agarwal N. S., Kawai M., Salituro F. G., Schmidt P. G. Inhibition of aspartic proteases by pepstatin and 3-methylstatine derivatives of pepstatin. Evidence for collected-substrate enzyme inhibition. Biochemistry. 1985 Jun 18;24(13):3165–3173. doi: 10.1021/bi00334a014. [DOI] [PubMed] [Google Scholar]
  24. Rich D. H., Sun E. T., Ulm E. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effects of structure on inhibition of pepsin and renin. J Med Chem. 1980 Jan;23(1):27–33. doi: 10.1021/jm00175a006. [DOI] [PubMed] [Google Scholar]
  25. Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO J. 1989 Aug;8(8):2179–2188. doi: 10.1002/j.1460-2075.1989.tb08340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
  27. Suguna K., Bott R. R., Padlan E. A., Subramanian E., Sheriff S., Cohen G. H., Davies D. R. Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis. J Mol Biol. 1987 Aug 20;196(4):877–900. doi: 10.1016/0022-2836(87)90411-6. [DOI] [PubMed] [Google Scholar]
  28. Suguna K., Padlan E. A., Smith C. W., Carlson W. D., Davies D. R. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7009–7013. doi: 10.1073/pnas.84.20.7009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thaisrivongs S., Pals D. T., Kati W. M., Turner S. R., Thomasco L. M. Difluorostatine- and difluorostatone-containing peptides as potent and specific renin inhibitors. J Med Chem. 1985 Nov;28(11):1553–1555. doi: 10.1021/jm00149a001. [DOI] [PubMed] [Google Scholar]
  30. Thaisrivongs S., Pals D. T., Kati W. M., Turner S. R., Thomasco L. M., Watt W. Design and synthesis of potent and specific renin inhibitors containing difluorostatine, difluorostatone, and related analogues. J Med Chem. 1986 Oct;29(10):2080–2087. doi: 10.1021/jm00160a048. [DOI] [PubMed] [Google Scholar]
  31. Thomas K. A., Smith G. M., Thomas T. B., Feldmann R. J. Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4843–4847. doi: 10.1073/pnas.79.16.4843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Umezawa H., Aoyagi T., Morishima H., Matsuzaki M., Hamada M. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 1970 May;23(5):259–262. doi: 10.7164/antibiotics.23.259. [DOI] [PubMed] [Google Scholar]
  33. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES