Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Apr;1(4):472–493. doi: 10.1002/pro.5560010403

The molecular mechanism for the tetrameric association of glycogen phosphorylase promoted by protein phosphorylation.

D Barford 1, L N Johnson 1
PMCID: PMC2142214  PMID: 1304350

Abstract

The allosteric transition of glycogen phosphorylase promoted by protein phosphorylation is accompanied by the association of a pair of functional dimers to form a tetramer. The conformational changes within the dimer that lead to the creation of a protein recognition surface have been analyzed from a comparison of the crystal structures of T-state dimeric phosphorylase b and R-state tetrameric phosphorylase a. Regions of the structure that participate in the tetramer interface are situated within structural subdomains. These include the glycogen storage subdomain, the C-terminal subdomain and the tower helix. The subdomains undergo concerted conformational transitions on conversion from the T to the R state (overall r.m.s. shifts between 1 and 1.7 A) and, together with the quaternary conformational change within the functional dimer, create the tetramer interface. The glycogen storage subdomain and the C-terminal subdomain are distinct from those regions that contribute to the dimer interface, but shifts in the subdomains are correlated with the allosteric transitions that are mediated by the dimer interface. The structural properties of the tetramer interface are atypical of an oligomeric protein interface and are more similar to protein recognition surfaces observed in protease inhibitors and antibody-protein antigen complexes. There is a preponderance of polar and charged residues at the tetramer interface and a high number of H-bonds per surface area (one H-bond per 130 A2). In addition, the surface area made inaccessible at the interface is relatively small (1,142 A2 per subunit on dimer to tetramer association compared with 2,217 A2 per subunit on monomer-to-dimer association).

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barford D., Hu S. H., Johnson L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol. 1991 Mar 5;218(1):233–260. doi: 10.1016/0022-2836(91)90887-c. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  3. Bhat T. N., Bentley G. A., Fischmann T. O., Boulot G., Poljak R. J. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature. 1990 Oct 4;347(6292):483–485. doi: 10.1038/347483a0. [DOI] [PubMed] [Google Scholar]
  4. Black W. J., Wang J. H. Studies on the allosteric activation of glycogen phosphorylase b by Nucleotides. I. Activation of phosphorylase b by inosine monophosphate. J Biol Chem. 1968 Nov 25;243(22):5892–5898. [PubMed] [Google Scholar]
  5. Buc H. On the allosteric interaction between 5'AMP and orthophosphate on phosphorylase b. Quantitative kinetic predictions. Biochem Biophys Res Commun. 1967 Jul 10;28(1):59–64. doi: 10.1016/0006-291x(67)90406-8. [DOI] [PubMed] [Google Scholar]
  6. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  7. Davies D. R., Padlan E. A., Sheriff S. Antibody-antigen complexes. Annu Rev Biochem. 1990;59:439–473. doi: 10.1146/annurev.bi.59.070190.002255. [DOI] [PubMed] [Google Scholar]
  8. Davis C. H., Schliselfeld L. H., Wolf D. P., Leavitt C. A., Krebs E. G. Interrelationships among glycogen phosphorylase isozymes. J Biol Chem. 1967 Oct 25;242(20):4824–4833. [PubMed] [Google Scholar]
  9. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  10. Goldsmith E. J., Sprang S. R., Hamlin R., Xuong N. H., Fletterick R. J. Domain separation in the activation of glycogen phosphorylase a. Science. 1989 Aug 4;245(4917):528–532. doi: 10.1126/science.2756432. [DOI] [PubMed] [Google Scholar]
  11. HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang C. Y., Graves D. J. Correlation between subunit interactions and enzymatic activity of phosphorylase a. Method for determining equilibrium constants from initial rate measurements. Biochemistry. 1970 Feb 3;9(3):660–671. doi: 10.1021/bi00805a028. [DOI] [PubMed] [Google Scholar]
  13. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  14. Janin J., Miller S., Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988 Nov 5;204(1):155–164. doi: 10.1016/0022-2836(88)90606-7. [DOI] [PubMed] [Google Scholar]
  15. Johnson L. N., Acharya K. R., Jordan M. D., McLaughlin P. J. Refined crystal structure of the phosphorylase-heptulose 2-phosphate-oligosaccharide-AMP complex. J Mol Biol. 1990 Feb 5;211(3):645–661. doi: 10.1016/0022-2836(90)90271-M. [DOI] [PubMed] [Google Scholar]
  16. Johnson L. N., Barford D. Glycogen phosphorylase. The structural basis of the allosteric response and comparison with other allosteric proteins. J Biol Chem. 1990 Feb 15;265(5):2409–2412. [PubMed] [Google Scholar]
  17. Johnson L. N., Cheetham J., McLaughlin P. J., Acharya K. R., Barford D., Phillips D. C. Protein-oligosaccharide interactions: lysozyme, phosphorylase, amylases. Curr Top Microbiol Immunol. 1988;139:81–134. doi: 10.1007/978-3-642-46641-0_4. [DOI] [PubMed] [Google Scholar]
  18. Johnson L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992 Mar;6(6):2274–2282. doi: 10.1096/fasebj.6.6.1544539. [DOI] [PubMed] [Google Scholar]
  19. KELLER P. J., CORI G. T. Enzymic conversion of phosphorylase a to phosphorylase b. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):235–238. doi: 10.1016/0006-3002(53)90142-5. [DOI] [PubMed] [Google Scholar]
  20. Kantrowitz E. R., Lipscomb W. N. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science. 1988 Aug 5;241(4866):669–674. doi: 10.1126/science.3041592. [DOI] [PubMed] [Google Scholar]
  21. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  22. Leonidas D. D., Oikonomakos N. G., Papageorgiou A. C., Xenakis A., Cazianis C. T., Bem F. The ammonium sulfate activation of phosphorylase b. FEBS Lett. 1990 Feb 12;261(1):23–27. doi: 10.1016/0014-5793(90)80627-u. [DOI] [PubMed] [Google Scholar]
  23. Lesk A. M., Chothia C. Mechanisms of domain closure in proteins. J Mol Biol. 1984 Mar 25;174(1):175–191. doi: 10.1016/0022-2836(84)90371-1. [DOI] [PubMed] [Google Scholar]
  24. Martin J. L., Johnson L. N., Withers S. G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry. 1990 Dec 4;29(48):10745–10757. doi: 10.1021/bi00500a005. [DOI] [PubMed] [Google Scholar]
  25. Metzger B., Helmireich E., Glaser L. The mechanism of activation of skeletal muscle phosphorylase A by glycogen. Proc Natl Acad Sci U S A. 1967 Apr;57(4):994–1001. doi: 10.1073/pnas.57.4.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyer F., Heilmeyer L. M., Jr, Haschke R. H., Fischer E. H. Control of phosphorylase activity in a muscle glycogen particle. I. Isolation and characterization of the protein-glycogen complex. J Biol Chem. 1970 Dec 25;245(24):6642–6648. [PubMed] [Google Scholar]
  27. Miller S., Lesk A. M., Janin J., Chothia C. The accessible surface area and stability of oligomeric proteins. 1987 Aug 27-Sep 2Nature. 328(6133):834–836. doi: 10.1038/328834a0. [DOI] [PubMed] [Google Scholar]
  28. Oikonomakos N. G., Johnson L. N., Acharya K. R., Stuart D. I., Barford D., Hajdu J., Varvill K. M., Melpidou A. E., Papageorgiou T., Graves D. J. Pyridoxal phosphate site in glycogen phosphorylase b: structure in native enzyme and in three derivatives with modified cofactors. Biochemistry. 1987 Dec 15;26(25):8381–8389. doi: 10.1021/bi00399a053. [DOI] [PubMed] [Google Scholar]
  29. Schirmer T., Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature. 1990 Jan 11;343(6254):140–145. doi: 10.1038/343140a0. [DOI] [PubMed] [Google Scholar]
  30. Sotiroudis T. G., Oikonomakos N. G., Evangelopoulos A. E. Effect of sulfated polysaccharides and sulfate anions on the AMP-dependent activity of phosphorylase b. Biochem Biophys Res Commun. 1979 Sep 12;90(1):234–239. doi: 10.1016/0006-291x(79)91615-2. [DOI] [PubMed] [Google Scholar]
  31. Sprang S. R., Acharya K. R., Goldsmith E. J., Stuart D. I., Varvill K., Fletterick R. J., Madsen N. B., Johnson L. N. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature. 1988 Nov 17;336(6196):215–221. doi: 10.1038/336215a0. [DOI] [PubMed] [Google Scholar]
  32. Sprang S. R., Withers S. G., Goldsmith E. J., Fletterick R. J., Madsen N. B. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 1991 Nov 29;254(5036):1367–1371. doi: 10.1126/science.1962195. [DOI] [PubMed] [Google Scholar]
  33. Sprang S., Fletterick R. J. The structure of glycogen phosphorylase alpha at 2.5 A resolution. J Mol Biol. 1979 Jul 5;131(3):523–551. doi: 10.1016/0022-2836(79)90006-8. [DOI] [PubMed] [Google Scholar]
  34. WANG J. H., GRAVES D. J. Effect of ionic strength on the sedimentation of glycogen phosphorylase a. J Biol Chem. 1963 Jul;238:2386–2389. [PubMed] [Google Scholar]
  35. WANG J. H., SHONKA M. L., GRAVES D. J. THE EFFECT OF GLUCOSE ON THE SEDIMENTATION AND CATALYTIC ACTIVITY OF GLYCOGEN PHOSPHORYLASE. Biochem Biophys Res Commun. 1965 Jan 4;18:131–135. doi: 10.1016/0006-291x(65)90895-8. [DOI] [PubMed] [Google Scholar]
  36. Weiss E. R., Kelleher D. J., Woon C. W., Soparkar S., Osawa S., Heasley L. E., Johnson G. L. Receptor activation of G proteins. FASEB J. 1988 Oct;2(13):2841–2848. doi: 10.1096/fasebj.2.13.3139484. [DOI] [PubMed] [Google Scholar]
  37. Withers S. G., Madsen N. B., Sykes B. D. Covalently activated glycogen phosphorylase: a phosphorus-31 nuclear magnetic resonance and ultracentrifugation analysis. Biochemistry. 1982 Dec 21;21(26):6716–6722. doi: 10.1021/bi00269a016. [DOI] [PubMed] [Google Scholar]
  38. Withers S. G., Sykes B. D., Madsen N. B., Kasvinsky P. J. Identical structural changes induced in glycogen phosphorylase by two nonexclusive allosteric inhibitors. Biochemistry. 1979 Nov 27;18(24):5342–5348. doi: 10.1021/bi00591a013. [DOI] [PubMed] [Google Scholar]
  39. Yarden Y., Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem. 1988;57:443–478. doi: 10.1146/annurev.bi.57.070188.002303. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES