Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Apr;1(4):540–548. doi: 10.1002/pro.5560010409

Extreme pKa displacements at the active sites of FMN-dependent alpha-hydroxy acid-oxidizing enzymes.

F Lederer 1
PMCID: PMC2142218  PMID: 1338973

Abstract

Flavocytochrome b2 (or L-lactate dehydrogenase) from baker's yeast is thought to operate by the initial formation of a carbanion, as do the evolutionarily related alpha-hydroxy acid-oxidizing FMN-dependent oxidases. Previous work has shown that, in the active site of the unligated reduced flavocytochrome b2, the group that has captured the substrate alpha-proton has a high pKapp, calculated to lie around 15 through the use of Eigen's equation. A detailed inspection of the now known three-dimensional structure of the enzyme leads to the conclusion that the high pKa belongs to His 373, an active site group that plays the role of general base in the forward reaction and of general acid in the reverse direction. Moreover, consideration of the kinetics of proton transfer during the catalytic cycle suggests that the pKa of the reduced FMN N5 position should be lowered by several pH units compared to its pKa of 20 or more when free. The features of the three-dimensional structure possibly responsible for these pK shifts are analyzed; they are proposed to consist of a network of hydrogen bonds with the solvent and of a mutual electrostatic stabilization of anionic reduced flavin and the imidazolium ion. Finally, it is suggested that similar pK shifts affect the active sites of the alpha-hydroxy acid-oxidizing flavooxidases, which are homologous to flavocytochrome b2. The functional significance of these pK shifts in terms of catalysis and semiquinone stabilization is discussed.

Full Text

The Full Text of this article is available as a PDF (966.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY C. A., MORTON R. K. Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature. 1954 Apr 24;173(4408):749–752. doi: 10.1038/173749a0. [DOI] [PubMed] [Google Scholar]
  2. Bachovchin W. W. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism. Biochemistry. 1986 Nov 18;25(23):7751–7759. doi: 10.1021/bi00371a070. [DOI] [PubMed] [Google Scholar]
  3. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  4. Birktoft J. J., Banaszak L. J. The presence of a histidine-aspartic acid pair in the active site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Biol Chem. 1983 Jan 10;258(1):472–482. doi: 10.2210/pdb2mdh/pdb. [DOI] [PubMed] [Google Scholar]
  5. Black M. T., Gunn F. J., Chapman S. K., Reid G. A. Structural basis for the kinetic differences between flavocytochromes b2 from the yeasts Hansenula anomala and Saccharomyces cerevisiae. Biochem J. 1989 Nov 1;263(3):973–976. doi: 10.1042/bj2630973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capeillère-Blandin C., Bray R. C., Iwatsubo M., Labeyrie F. Flavocytochrome b2: kinetic studies by absorbance and electron-paramagnetic-resonance spectroscopy of electron distribution among prosthetic groups. Eur J Biochem. 1975 Jun;54(2):549–566. doi: 10.1111/j.1432-1033.1975.tb04168.x. [DOI] [PubMed] [Google Scholar]
  7. Capeillère-Blandin C. Flavocytochrome b2: simulation studies of the electron-transfer reactions among the prosthetic groups. Eur J Biochem. 1975 Aug 1;56(1):91–101. doi: 10.1111/j.1432-1033.1975.tb02210.x. [DOI] [PubMed] [Google Scholar]
  8. Cederlund E., Lindqvist Y., Söderlund G., Brändén C. I., Jörnvall H. Primary structure of glycolate oxidase from spinach. Eur J Biochem. 1988 May 2;173(3):523–530. doi: 10.1111/j.1432-1033.1988.tb14029.x. [DOI] [PubMed] [Google Scholar]
  9. Choong Y. S., Massey V. Stabilization of lactate oxidase flavin anion radical by complex formation. J Biol Chem. 1980 Sep 25;255(18):8672–8677. [PubMed] [Google Scholar]
  10. Diêp Lê K. H., Lederer F. Amino acid sequence of long chain alpha-hydroxy acid oxidase from rat kidney, a member of the family of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. J Biol Chem. 1991 Nov 5;266(31):20877–20881. [PubMed] [Google Scholar]
  11. Dubois J., Chapman S. K., Mathews F. S., Reid G. A., Lederer F. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation. Biochemistry. 1990 Jul 10;29(27):6393–6400. doi: 10.1021/bi00479a008. [DOI] [PubMed] [Google Scholar]
  12. Ghisla S., Massey V. Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem. 1989 Apr 15;181(1):1–17. doi: 10.1111/j.1432-1033.1989.tb14688.x. [DOI] [PubMed] [Google Scholar]
  13. Ghisla S., Massey V. Studies on the mechanism of action of the flavoenzyme lactate oxidase. Proton uptake and release during the binding of transition state analogs. J Biol Chem. 1977 Oct 10;252(19):6729–6735. [PubMed] [Google Scholar]
  14. Ghrir R., Becam A. M., Lederer F. Primary structure of flavocytochrome b2 from baker's yeast. Purification by reverse-phase high-pressure liquid chromatography and sequencing of fragment alpha cyanogen bromide peptides. Eur J Biochem. 1984 Feb 15;139(1):59–74. doi: 10.1111/j.1432-1033.1984.tb07976.x. [DOI] [PubMed] [Google Scholar]
  15. Giegel D. A., Williams C. H., Jr, Massey V. L-lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence, and primary structure homology within an enzyme family. J Biol Chem. 1990 Apr 25;265(12):6626–6632. [PubMed] [Google Scholar]
  16. Halle J. C., Simonnin M. P. Proton transfer in histidine hydrochloride induced by a dipolar aprotic solvent. J Biol Chem. 1981 Aug 25;256(16):8569–8572. [PubMed] [Google Scholar]
  17. Jacq C., Lederer F. Cytochrome b2 from bakers' yeast (L-lactate dehydrogenase). A double-headed enzyme. Eur J Biochem. 1974 Jan 16;41(2):311–320. doi: 10.1111/j.1432-1033.1974.tb03271.x. [DOI] [PubMed] [Google Scholar]
  18. Komiyama M., Bender M. L., Utaka M., Takeda A. Model for "charge-relay": acceleration by carboxylate anion in intramolecular general base-catalyzed ester hydrolysis by the imidazolyl group. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2634–2638. doi: 10.1073/pnas.74.7.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kossiakoff A. A., Spencer S. A. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry. 1981 Oct 27;20(22):6462–6474. doi: 10.1021/bi00525a027. [DOI] [PubMed] [Google Scholar]
  20. Kuo D. J., Rose I. A. Aconitase: its source of catalytic protons. Biochemistry. 1987 Dec 1;26(24):7589–7596. doi: 10.1021/bi00398a009. [DOI] [PubMed] [Google Scholar]
  21. Lederer F. Sulfite binding to a flavodehydrogenase, cytochrome b2 from baker's yeast. Eur J Biochem. 1978 Aug 1;88(2):425–431. doi: 10.1111/j.1432-1033.1978.tb12465.x. [DOI] [PubMed] [Google Scholar]
  22. Liang T. C., Abeles R. H. Complex of alpha-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy. Biochemistry. 1987 Dec 1;26(24):7603–7608. doi: 10.1021/bi00398a011. [DOI] [PubMed] [Google Scholar]
  23. Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
  24. Lindqvist Y., Brändén C. I. Structure of glycolate oxidase from spinach. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6855–6859. doi: 10.1073/pnas.82.20.6855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lindqvist Y., Brändén C. I. The active site of spinach glycolate oxidase. J Biol Chem. 1989 Feb 25;264(6):3624–3628. [PubMed] [Google Scholar]
  26. Lindqvist Y. Refined structure of spinach glycolate oxidase at 2 A resolution. J Mol Biol. 1989 Sep 5;209(1):151–166. doi: 10.1016/0022-2836(89)90178-2. [DOI] [PubMed] [Google Scholar]
  27. Massey V., Ghisla S., Kieschke K. Studies on the reaction mechanism of lactate oxidase. Formation of two covalent flavin-substrate adducts on reaction with glycollate. J Biol Chem. 1980 Apr 10;255(7):2796–2806. [PubMed] [Google Scholar]
  28. Massey V., Müller F., Feldberg R., Schuman M., Sullivan P. A., Howell L. G., Mayhew S. G., Matthews R. G., Foust G. P. The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem. 1969 Aug 10;244(15):3999–4006. [PubMed] [Google Scholar]
  29. Pompon D. Flavocytochrome b2 from baker's yeast. Computer-simulation studies of a new scheme for intramolecular electron transfer. Eur J Biochem. 1980 May;106(1):151–159. [PubMed] [Google Scholar]
  30. Porter D. J., Voet J. G., Bright H. J. Direct evidence for carbanions and covalent N 5 -flavin-carbanion adducts as catalytic intermediates in the oxidation of nitroethane by D-amino acid oxidase. J Biol Chem. 1973 Jun 25;248(12):4400–4416. [PubMed] [Google Scholar]
  31. Reid G. A., White S., Black M. T., Lederer F., Mathews F. S., Chapman S. K. Probing the active site of flavocytochrome b2 by site-directed mutagenesis. Eur J Biochem. 1988 Dec 15;178(2):329–333. doi: 10.1111/j.1432-1033.1988.tb14454.x. [DOI] [PubMed] [Google Scholar]
  32. Risler Y., Tegoni M., Gervais M. Nucleotide sequence of the Hansenula anomala gene encoding flavocytochrome b2 (L-lactate:cytochrome c oxidoreductase). Nucleic Acids Res. 1989 Oct 25;17(20):8381–8381. doi: 10.1093/nar/17.20.8381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rose I. A., Kuo D. J. The substrate proton of the pyruvate kinase reaction. Biochemistry. 1989 Dec 12;28(25):9579–9585. doi: 10.1021/bi00451a005. [DOI] [PubMed] [Google Scholar]
  34. Suck D., Oefner C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature. 1986 Jun 5;321(6070):620–625. doi: 10.1038/321620a0. [DOI] [PubMed] [Google Scholar]
  35. Tegoni M., Janot J. M., Labeyrie F. Regulation of dehydrogenases/one-electron transferases by modification of flavin redox potentials. Effect of product binding on semiquinone stabilization in yeast flavocytochrome b2. Eur J Biochem. 1986 Mar 17;155(3):491–503. doi: 10.1111/j.1432-1033.1986.tb09516.x. [DOI] [PubMed] [Google Scholar]
  36. Tegoni M., Mathews F. S. Crystallographic study of the complex between sulfite and bakers' yeast flavocytochrome b2. J Biol Chem. 1988 Dec 25;263(36):19278–19281. [PubMed] [Google Scholar]
  37. Urban P., Alliel P. M., Lederer F. On the transhydrogenase activity of baker's yeast flavocytochrome b2. Eur J Biochem. 1983 Aug 1;134(2):275–281. doi: 10.1111/j.1432-1033.1983.tb07562.x. [DOI] [PubMed] [Google Scholar]
  38. Urban P., Chirat I., Lederer F. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker's yeast. Biochemistry. 1988 Sep 20;27(19):7365–7371. doi: 10.1021/bi00419a029. [DOI] [PubMed] [Google Scholar]
  39. Urban P., Lederer F. Inactivation of flavocytochrome b2 with fluoropyruvate. Reaction at the active-site histidine. Eur J Biochem. 1988 Apr 5;173(1):155–162. doi: 10.1111/j.1432-1033.1988.tb13979.x. [DOI] [PubMed] [Google Scholar]
  40. Urban P., Lederer F. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2. J Biol Chem. 1985 Sep 15;260(20):11115–11122. [PubMed] [Google Scholar]
  41. Walker M. C., Tollin G. Laser flash photolysis studies of the kinetics of electron-transfer reactions of Saccharomyces flavocytochrome b2: evidence for conformational gating of intramolecular electron transfer induced by pyruvate binding. Biochemistry. 1991 Jun 4;30(22):5546–5555. doi: 10.1021/bi00236a030. [DOI] [PubMed] [Google Scholar]
  42. Weaver L. H., Kester W. R., Matthews B. W. A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol. 1977 Jul;114(1):119–132. doi: 10.1016/0022-2836(77)90286-8. [DOI] [PubMed] [Google Scholar]
  43. Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  44. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  45. Xia Z. X., Shamala N., Bethge P. H., Lim L. W., Bellamy H. D., Xuong N. H., Lederer F., Mathews F. S. Three-dimensional structure of flavocytochrome b2 from baker's yeast at 3.0-A resolution. Proc Natl Acad Sci U S A. 1987 May;84(9):2629–2633. doi: 10.1073/pnas.84.9.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES