Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 May;1(5):590–600. doi: 10.1002/pro.5560010505

Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom.

A Randolph 1, S H Chamberlain 1, H L Chu 1, A D Retzios 1, F S Markland Jr 1, F R Masiarz 1
PMCID: PMC2142229  PMID: 1304358

Abstract

The complete amino acid sequence of fibrolase, a fibrinolytic enzyme from southern copperhead (Agkistrodon contortrix contortrix) venom, has been determined. This is the first report of the sequence of a direct-acting, nonhemorrhagic fibrinolytic enzyme found in snake venom. The majority of the sequence was established by automated Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. The amino-terminus is blocked by a cyclized glutamine (pyroglutamic acid) residue, and the sequence of this region of the molecule was determined by mass spectrometry. Fibrolase is composed of 203 residues in a single polypeptide chain with a molecular weight of 22,891, as determined by the sequence. Its sequence is homologous to the sequence of the hemorrhagic toxin Ht-d of Crotalus atrox venom and with the sequences of two metalloproteinases from Trimeresurus flavoviridis venom. Microheterogeneity in the sequence was found at both the amino-terminus and at residues 189 and 192. All six cysteine residues in fibrolase are involved in disulfide bonds. A disulfide bond between cysteine-118 and cysteine-198 has been established and bonds between cysteines-158/165 and between cysteines-160/192 are inferred from the homology to Ht-d. Secondary structure prediction reveals a very low percentage of alpha-helix (4%), but much greater beta-structure (39.5%). Analysis of the sequence reveals the absence of asparagine-linked glycosylation sites defined by the consensus sequence: asparagine-X-serine/threonine.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  2. Böhlen P., Stein S., Stone J., Udenfriend S. Automatic Monitoring of primary amines in preparative column effluents with fluorescamine. Anal Biochem. 1975 Aug;67(2):438–445. doi: 10.1016/0003-2697(75)90316-4. [DOI] [PubMed] [Google Scholar]
  3. Cohen S. A., Bidlingmeyer B. A., Tarvin T. L. PITC derivatives in amino acid analysis. Nature. 1986 Apr 24;320(6064):769–770. doi: 10.1038/320769a0. [DOI] [PubMed] [Google Scholar]
  4. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  5. Fowler A. V. Amino acid sequence of beta-galactosidase. VII. Isolation of the 24 cyanogen bromide peptides. J Biol Chem. 1978 Aug 10;253(15):5499–5504. [PubMed] [Google Scholar]
  6. Friedman M., Krull L. H., Cavins J. F. The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine. J Biol Chem. 1970 Aug 10;245(15):3868–3871. [PubMed] [Google Scholar]
  7. Goldberg G. I., Wilhelm S. M., Kronberger A., Bauer E. A., Grant G. A., Eisen A. Z. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem. 1986 May 15;261(14):6600–6605. [PubMed] [Google Scholar]
  8. Guan A. L., Markland F. S., Jr Isoelectric focusing in immobilized pH gradients of a snake venom fibrinolytic enzyme. J Biochem Biophys Methods. 1988 Jun-Jul;16(2-3):215–226. doi: 10.1016/0165-022x(88)90032-2. [DOI] [PubMed] [Google Scholar]
  9. Guan A. L., Retzios A. D., Henderson G. N., Markland F. S., Jr Purification and characterization of a fibrinolytic enzyme from venom of the southern copperhead snake (Agkistrodon contortrix contortrix). Arch Biochem Biophys. 1991 Sep;289(2):197–207. doi: 10.1016/0003-9861(91)90462-r. [DOI] [PubMed] [Google Scholar]
  10. Hagihara S., Komori Y., Tu A. T. Proteolytic specificity of hemorrhagic toxin b from Crotalus atrox (western diamondback rattlesnake) venom. Comp Biochem Physiol C. 1985;82(1):21–27. doi: 10.1016/0742-8413(85)90204-x. [DOI] [PubMed] [Google Scholar]
  11. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  12. McKerrow J. H. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J Biol Chem. 1987 May 5;262(13):5943–5943. [PubMed] [Google Scholar]
  13. Miyata T., Takeya H., Ozeki Y., Arakawa M., Tokunaga F., Iwanaga S., Omori-Satoh T. Primary structure of hemorrhagic protein, HR2a, isolated from the venom of Trimeresurus flavoviridis. J Biochem. 1989 May;105(5):847–853. doi: 10.1093/oxfordjournals.jbchem.a122756. [DOI] [PubMed] [Google Scholar]
  14. Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res. 1986 Jul 25;14(14):5843–5855. doi: 10.1093/nar/14.14.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Retzios A. D., Markland F. S., Jr A direct-acting fibrinolytic enzyme from the venom of Agkistrodon contortrix contortrix: effects on various components of the human blood coagulation and fibrinolysis systems. Thromb Res. 1988 Dec 15;52(6):541–552. doi: 10.1016/0049-3848(88)90127-2. [DOI] [PubMed] [Google Scholar]
  17. Takeya H., Arakawa M., Miyata T., Iwanaga S., Omori-Satoh T. Primary structure of H2-proteinase, a non-hemorrhagic metalloproteinase, isolated from the venom of the habu snake, Trimeresurus flavoviridis. J Biochem. 1989 Jul;106(1):151–157. doi: 10.1093/oxfordjournals.jbchem.a122805. [DOI] [PubMed] [Google Scholar]
  18. Tu A. T., Nikai T., Baker J. O. Proteolytic specificity of hemorrhage toxin a isolated from western diamondback rattlesnake (Crotalus atrox) venom. Biochemistry. 1981 Nov 24;20(24):7004–7009. doi: 10.1021/bi00527a035. [DOI] [PubMed] [Google Scholar]
  19. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Willis T. W., Tu A. T., Miller C. W. Thrombolysis with a snake venom protease in a rat model of venous thrombosis. Thromb Res. 1989 Jan 1;53(1):19–29. doi: 10.1016/0049-3848(89)90112-6. [DOI] [PubMed] [Google Scholar]
  21. Willis T. W., Tu A. T. Purification and biochemical characterization of atroxase, a nonhemorrhagic fibrinolytic protease from western diamondback rattlesnake venom. Biochemistry. 1988 Jun 28;27(13):4769–4777. doi: 10.1021/bi00413a028. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES