Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Oct;2(10):1686–1696. doi: 10.1002/pro.5560021014

Confidence limits on the branching order of phylogenetic trees.

A C Shearer 1, M S Johnson 1
PMCID: PMC2142261  PMID: 8251943

Abstract

We describe a confidence test for branching order that can aid protein phylogeny reconstruction as well as the evaluation of the optimal tree. It is proposed that the process resulting in the observed amino acid residue differences, which is the basis for the identification of the order and relative times of divergence events, is appropriately described by a modification of the negative binomial distribution. The relative total numbers of mutations (accepted and nonaccepted), which result in a given number of amino acid differences, may be obtained as the expectation of this distribution. The associated variances enable significant differences in tree branching order to be established. If the total rates of mutation of the genes encoding the compared proteins are equal, the expected total mutations and their associated variances map identically to their relative times of divergence. In addition, significantly different rates of change (due to differences in total mutation rate and/or acceptance rate) may be identified without the requirement of outlying reference group. The method is equally applicable to phylogenies derived from DNA or RNA sequence information.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Doolittle R. F., Feng D. F. Nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol. 1990;183:659–669. doi: 10.1016/0076-6879(90)83043-9. [DOI] [PubMed] [Google Scholar]
  3. Fitch W. M., Markowitz E. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet. 1970 Oct;4(5):579–593. doi: 10.1007/BF00486096. [DOI] [PubMed] [Google Scholar]
  4. Fitch W. M. The molecular evolution of cytochrome c in eukaryotes. J Mol Evol. 1976 Jun 23;8(1):13–40. doi: 10.1007/BF01738880. [DOI] [PubMed] [Google Scholar]
  5. Hein J. Unified approach to alignment and phylogenies. Methods Enzymol. 1990;183:626–645. doi: 10.1016/0076-6879(90)83041-7. [DOI] [PubMed] [Google Scholar]
  6. Johnson M. S., Overington J. P., Blundell T. L. Alignment and searching for common protein folds using a data bank of structural templates. J Mol Biol. 1993 Jun 5;231(3):735–752. doi: 10.1006/jmbi.1993.1323. [DOI] [PubMed] [Google Scholar]
  7. Lake J. A. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 1987 Mar;4(2):167–191. doi: 10.1093/oxfordjournals.molbev.a040433. [DOI] [PubMed] [Google Scholar]
  8. Li W. H. A statistical test of phylogenies estimated from sequence data. Mol Biol Evol. 1989 Jul;6(4):424–435. doi: 10.1093/oxfordjournals.molbev.a040560. [DOI] [PubMed] [Google Scholar]
  9. Li W. H. Simple method for constructing phylogenetic trees from distance matrices. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1085–1089. doi: 10.1073/pnas.78.2.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nei M., Chakraborty R. Empirical relationship between the number of nucleotide substitutions and interspecific identity of amino acid sequences in some proteins. J Mol Evol. 1976 May 26;7(4):313–323. doi: 10.1007/BF01743627. [DOI] [PubMed] [Google Scholar]
  11. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  12. Sarich V. M., Wilson A. C. Rates of albumin evolution in primates. Proc Natl Acad Sci U S A. 1967 Jul;58(1):142–148. doi: 10.1073/pnas.58.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stewart C. B. The powers and pitfalls of parsimony. Nature. 1993 Feb 18;361(6413):603–607. doi: 10.1038/361603a0. [DOI] [PubMed] [Google Scholar]
  14. Tajima F. Statistical method for estimating the standard errors of branch lengths in a phylogenetic tree reconstructed without assuming equal rates of nucleotide substitution among different lineages. Mol Biol Evol. 1992 Jan;9(1):168–181. doi: 10.1093/oxfordjournals.molbev.a040705. [DOI] [PubMed] [Google Scholar]
  15. Tateno Y., Nei M., Tajima F. Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. J Mol Evol. 1982;18(6):387–404. doi: 10.1007/BF01840887. [DOI] [PubMed] [Google Scholar]
  16. Uzzell T., Corbin K. W. Fitting discrete probability distributions to evolutionary events. Science. 1971 Jun 11;172(3988):1089–1096. doi: 10.1126/science.172.3988.1089. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES