Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Oct;2(10):1648–1663. doi: 10.1002/pro.5560021011

In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV.

S M Potter 1, W J Henzel 1, D W Aswad 1
PMCID: PMC2142267  PMID: 8251940

Abstract

We have determined the major sites responsible for isoaspartate formation during in vitro aging of bovine brain calmodulin under mild conditions. Protein L-isoaspartyl methyltransferase (EC 2.1.1.77) was used to quantify isoaspartate by the transfer of methyl-3H from S-adenosyl-L-[methyl-3H]methionine to the isoaspartyl (alpha-carboxyl) side chain. More than 1.2 mol of methyl-acceptor sites per mol of calmodulin accumulated during a 2-week incubation without calcium at pH 7.4, 37 degrees C. Analysis of proteolytic peptides of aged calmodulin revealed that > 95% of the methylation capacity is restricted to residues in the four calcium-binding domains, which are predicted to be highly flexible in the absence of calcium. We estimate that domains III, IV, and II accumulated 0.72, 0.60, and 0.13 mol of isoaspartate per mol of calmodulin, respectively. The Asn-97-Gly-98 sequence (domain III) is the greatest contributor to isoaspartate formation. Other major sites of isoaspartate formation are Asp-131-Gly-132 and Asp-133-Gly-134 in domain IV, and Asn-60-Gly-61 in domain II. Significant isoaspartate formation was also localized to Asp-20, Asp-22, and/or Asp-24 in domain I, to Asp-56 and/or Asp-58 in domain II, and to Asp-93 and/or Asp-95 in domain III. All of these residues are calcium ligands in the highly conserved EF-hand calcium-binding motif. Thus, other EF-hand proteins may also be subject to isoaspartate formation at these ligands. The results support the idea that isoaspartate formation in structured proteins is strongly influenced by both the C-flanking residue and by local flexibility.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artigues A., Birkett A., Schirch V. Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxymethyltransferase. J Biol Chem. 1990 Mar 25;265(9):4853–4858. [PubMed] [Google Scholar]
  2. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  3. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  4. Brodin P., Grundström T., Hofmann T., Drakenberg T., Thulin E., Forsén S. Expression of bovine intestinal calcium binding protein from a synthetic gene in Escherichia coli and characterization of the product. Biochemistry. 1986 Sep 23;25(19):5371–5377. doi: 10.1021/bi00367a004. [DOI] [PubMed] [Google Scholar]
  5. Brunauer L. S., Clarke S. Methylation of calmodulin at carboxylic acid residues in erythrocytes. A non-regulatory covalent modification? Biochem J. 1986 Jun 15;236(3):811–820. doi: 10.1042/bj2360811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capasso S., Mazzarella L., Zagari A. Deamidation via cyclic imide of asparaginyl peptides: dependence on salts, buffers and organic solvents. Pept Res. 1991 Jul-Aug;4(4):234–238. [PubMed] [Google Scholar]
  7. Chazin W. J., Kördel J., Thulin E., Hofmann T., Drakenberg T., Forsén S. Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D9k and structural characterization by 2D 1H NMR. Biochemistry. 1989 Oct 17;28(21):8646–8653. doi: 10.1021/bi00447a055. [DOI] [PubMed] [Google Scholar]
  8. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  9. Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res. 1987 Dec;30(6):808–821. doi: 10.1111/j.1399-3011.1987.tb03390.x. [DOI] [PubMed] [Google Scholar]
  10. Desrosiers R. R., Romanik E. A., O'Connor C. M. Selective carboxyl methylation of structurally altered calmodulins in Xenopus oocytes. J Biol Chem. 1990 Dec 5;265(34):21368–21374. [PubMed] [Google Scholar]
  11. Di Donato A., Galletti P., D'Alessio G. Selective deamidation and enzymatic methylation of seminal ribonuclease. Biochemistry. 1986 Dec 30;25(26):8361–8368. doi: 10.1021/bi00374a005. [DOI] [PubMed] [Google Scholar]
  12. Galletti P., Ciardiello A., Ingrosso D., Di Donato A., D'Alessio G. Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system. Biochemistry. 1988 Mar 8;27(5):1752–1757. doi: 10.1021/bi00405a055. [DOI] [PubMed] [Google Scholar]
  13. Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987 Jan 15;262(2):785–794. [PubMed] [Google Scholar]
  14. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  15. Gráf L., Hajós G., Patthy A., Cseh G. The influence of deamidation on the biological activity of porcine adrenocorticotropic hormone (ACTH). Horm Metab Res. 1973 Mar;5(2):142–143. doi: 10.1055/s-0028-1096726. [DOI] [PubMed] [Google Scholar]
  16. Hallahan T. W., Shapiro R., Strydom D. J., Vallee B. L. Importance of asparagine-61 and asparagine-109 to the angiogenic activity of human angiogenin. Biochemistry. 1992 Sep 1;31(34):8022–8029. doi: 10.1021/bi00149a036. [DOI] [PubMed] [Google Scholar]
  17. Henzel W. J., Rodriguez H., Watanabe C. Computer analysis of automated Edman degradation and amino acid analysis data. J Chromatogr. 1987 Aug 28;404(1):41–52. doi: 10.1016/s0021-9673(01)86835-7. [DOI] [PubMed] [Google Scholar]
  18. Hoffman J. L. Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. Biochemistry. 1986 Jul 29;25(15):4444–4449. doi: 10.1021/bi00363a041. [DOI] [PubMed] [Google Scholar]
  19. Ikura M., Spera S., Barbato G., Kay L. E., Krinks M., Bax A. Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry. 1991 Sep 24;30(38):9216–9228. doi: 10.1021/bi00102a013. [DOI] [PubMed] [Google Scholar]
  20. Johnson B. A., Aswad D. W. Kinetic properties of bovine brain protein L-isoaspartyl methyltransferase determined using a synthetic isoaspartyl peptide substrate. Neurochem Res. 1993 Jan;18(1):87–94. doi: 10.1007/BF00966926. [DOI] [PubMed] [Google Scholar]
  21. Johnson B. A., Aswad D. W. Optimal conditions for the use of protein L-isoaspartyl methyltransferase in assessing the isoaspartate content of peptides and proteins. Anal Biochem. 1991 Feb 1;192(2):384–391. doi: 10.1016/0003-2697(91)90553-6. [DOI] [PubMed] [Google Scholar]
  22. Johnson B. A., Langmack E. L., Aswad D. W. Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. J Biol Chem. 1987 Sep 5;262(25):12283–12287. [PubMed] [Google Scholar]
  23. Johnson B. A., Murray E. D., Jr, Clarke S., Glass D. B., Aswad D. W. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. J Biol Chem. 1987 Apr 25;262(12):5622–5629. [PubMed] [Google Scholar]
  24. Johnson B. A., Ngo S. Q., Aswad D. W. Widespread phylogenetic distribution of a protein methyltransferase that modifies L-isoaspartyl residues. Biochem Int. 1991 Jul;24(5):841–847. [PubMed] [Google Scholar]
  25. Johnson B. A., Shirokawa J. M., Hancock W. S., Spellman M. W., Basa L. J., Aswad D. W. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. J Biol Chem. 1989 Aug 25;264(24):14262–14271. [PubMed] [Google Scholar]
  26. Kanaya S., Uchida T. Comparison of the primary structures of ribonuclease U2 isoforms. Biochem J. 1986 Nov 15;240(1):163–170. doi: 10.1042/bj2400163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kossiakoff A. A. Tertiary structure is a principal determinant to protein deamidation. Science. 1988 Apr 8;240(4849):191–194. doi: 10.1126/science.3353715. [DOI] [PubMed] [Google Scholar]
  28. Kretsinger R. H. Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol. 1987;52:499–510. doi: 10.1101/sqb.1987.052.01.057. [DOI] [PubMed] [Google Scholar]
  29. Li C., Clarke S. Distribution of an L-isoaspartyl protein methyltransferase in eubacteria. J Bacteriol. 1992 Jan;174(2):355–361. doi: 10.1128/jb.174.2.355-361.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lowenson J. D., Clarke S. Identification of isoaspartyl-containing sequences in peptides and proteins that are usually poor substrates for the class II protein carboxyl methyltransferase. J Biol Chem. 1990 Feb 25;265(6):3106–3110. [PubMed] [Google Scholar]
  31. McFadden P. N., Clarke S. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins. Proc Natl Acad Sci U S A. 1987 May;84(9):2595–2599. doi: 10.1073/pnas.84.9.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murray E. D., Jr, Clarke S. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues. J Biol Chem. 1984 Sep 10;259(17):10722–10732. [PubMed] [Google Scholar]
  33. O'Connor C. M., Clarke S. Specific recognition of altered polypeptides by widely distributed methyltransferases. Biochem Biophys Res Commun. 1985 Nov 15;132(3):1144–1150. doi: 10.1016/0006-291x(85)91926-6. [DOI] [PubMed] [Google Scholar]
  34. Ota I. M., Clarke S. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin. Biochemistry. 1989 May 2;28(9):4020–4027. doi: 10.1021/bi00435a058. [DOI] [PubMed] [Google Scholar]
  35. Ota I. M., Clarke S. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. J Biol Chem. 1989 Jan 5;264(1):54–60. [PubMed] [Google Scholar]
  36. Persechini A., Moncrief N. D., Kretsinger R. H. The EF-hand family of calcium-modulated proteins. Trends Neurosci. 1989 Nov;12(11):462–467. doi: 10.1016/0166-2236(89)90097-0. [DOI] [PubMed] [Google Scholar]
  37. Ragone R., Facchiano F., Facchiano A., Facchiano A. M., Colonna G. Flexibility plot of proteins. Protein Eng. 1989 May;2(7):497–504. doi: 10.1093/protein/2.7.497. [DOI] [PubMed] [Google Scholar]
  38. Robinson A. B., Robinson L. R. Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8880–8884. doi: 10.1073/pnas.88.20.8880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Runte L., Jürgensmeier H. L., Unger C., Söling H. D. Calmodulin carboxylmethyl ester formation in intact human red cells and modulation of this reaction by divalent cations in vitro. FEBS Lett. 1982 Oct 4;147(1):125–130. doi: 10.1016/0014-5793(82)81025-9. [DOI] [PubMed] [Google Scholar]
  40. Skelton N. J., Kördel J., Forsén S., Chazin W. J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9K. J Mol Biol. 1990 Jun 20;213(4):593–598. doi: 10.1016/s0022-2836(05)80244-x. [DOI] [PubMed] [Google Scholar]
  41. Stephenson R. C., Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem. 1989 Apr 15;264(11):6164–6170. [PubMed] [Google Scholar]
  42. Vincent P. L., Siegel F. L. Carboxylmethylation of calmodulin in cultured pituitary cells. J Neurochem. 1987 Nov;49(5):1613–1622. doi: 10.1111/j.1471-4159.1987.tb01035.x. [DOI] [PubMed] [Google Scholar]
  43. Watterson D. M., Sharief F., Vanaman T. C. The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem. 1980 Feb 10;255(3):962–975. [PubMed] [Google Scholar]
  44. Wright H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 1991;26(1):1–52. doi: 10.3109/10409239109081719. [DOI] [PubMed] [Google Scholar]
  45. Yüksel K. U., Gracy R. W. In vitro deamidation of human triosephosphate isomerase. Arch Biochem Biophys. 1986 Aug 1;248(2):452–459. doi: 10.1016/0003-9861(86)90498-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES