Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Oct;2(10):1574–1590. doi: 10.1002/pro.5560021004

Identification, classification, and analysis of beta-bulges in proteins.

A W Chan 1, E G Hutchinson 1, D Harris 1, J M Thornton 1
PMCID: PMC2142268  PMID: 8251933

Abstract

A beta-bulge is a region of irregularity in a beta-sheet involving two beta-strands. It usually involves two or more residues in the bulged strand opposite to a single residue on the adjacent strand. These irregularities in beta-sheets were identified and classified automatically, extending the definition of beta-bulges given by Richardson et al. (Richardson, J.S., Getzoff, E.D., & Richardson, D.C., 1978, Proc. Natl. Acad. Sci. USA 75, 2574-2578). A set of 182 protein chains (170 proteins) was used, and a total of 362 bulges were extracted. Five types of beta-bulges were found: classic, G1, wide, bent, and special. Their characteristic amino acid preferences were found for most classes of bulges. Basically, bulges occur frequently in proteins; on average there are more than two bulges per protein. In general, beta-bulges produce two main changes in the structure of a beta-sheet: (1) disrupt the normal alternation of side-chain direction; (2) accentuate the twist of the sheet, altering the direction of the surrounding strands.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
  2. Arnold E., Rossmann M. G. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 A. J Mol Biol. 1990 Feb 20;211(4):763–801. doi: 10.1016/0022-2836(90)90076-x. [DOI] [PubMed] [Google Scholar]
  3. Bajaj M., Blundell T. Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng. 1984;13:453–492. doi: 10.1146/annurev.bb.13.060184.002321. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Burmeister W. P., Ruigrok R. W., Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992 Jan;11(1):49–56. doi: 10.1002/j.1460-2075.1992.tb05026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chothia C., Novotný J., Bruccoleri R., Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol. 1985 Dec 5;186(3):651–663. doi: 10.1016/0022-2836(85)90137-8. [DOI] [PubMed] [Google Scholar]
  7. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  9. Fujinaga M., James M. N. Rat submaxillary gland serine protease, tonin. Structure solution and refinement at 1.8 A resolution. J Mol Biol. 1987 May 20;195(2):373–396. doi: 10.1016/0022-2836(87)90658-9. [DOI] [PubMed] [Google Scholar]
  10. Howell E. E., Booth C., Farnum M., Kraut J., Warren M. S. A second-site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27----serine Escherichia coli dihydrofolate reductase. Biochemistry. 1990 Sep 18;29(37):8561–8569. doi: 10.1021/bi00489a009. [DOI] [PubMed] [Google Scholar]
  11. Hutchinson E. G., Thornton J. M. HERA--a program to draw schematic diagrams of protein secondary structures. Proteins. 1990;8(3):203–212. doi: 10.1002/prot.340080303. [DOI] [PubMed] [Google Scholar]
  12. James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
  13. Jones E. Y., Davis S. J., Williams A. F., Harlos K., Stuart D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
  14. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  15. Lapatto R., Nalini V., Bax B., Driessen H., Lindley P. F., Blundell T. L., Slingsby C. High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin. J Mol Biol. 1991 Dec 20;222(4):1067–1083. doi: 10.1016/0022-2836(91)90594-v. [DOI] [PubMed] [Google Scholar]
  16. Lundqvist T., Schneider G. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J Biol Chem. 1991 Jul 5;266(19):12604–12611. [PubMed] [Google Scholar]
  17. Milner-White E. J. Beta-bulges within loops as recurring features of protein structure. Biochim Biophys Acta. 1987 Jan 30;911(2):261–265. doi: 10.1016/0167-4838(87)90017-3. [DOI] [PubMed] [Google Scholar]
  18. Newman M., Safro M., Frazao C., Khan G., Zdanov A., Tickle I. J., Blundell T. L., Andreeva N. X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin. J Mol Biol. 1991 Oct 20;221(4):1295–1309. [PubMed] [Google Scholar]
  19. Parthasarathy R., Go K., Chaturvedi S. Helix-forming tendencies of amino acids depend on their sequence contexts: tripeptides AFG and FAG show incipient beta-bulge formation in their crystal structures. Biopolymers. 1993 Jan;33(1):163–171. doi: 10.1002/bip.360330116. [DOI] [PubMed] [Google Scholar]
  20. Petratos K., Banner D. W., Beppu T., Wilson K. S., Tsernoglou D. The crystal structure of pseudoazurin from Alcaligenes faecalis S-6 determined at 2.9 A resolution. FEBS Lett. 1987 Jun 29;218(2):209–214. doi: 10.1016/0014-5793(87)81048-7. [DOI] [PubMed] [Google Scholar]
  21. Richardson J. S., Getzoff E. D., Richardson D. C. The beta bulge: a common small unit of nonrepetitive protein structure. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2574–2578. doi: 10.1073/pnas.75.6.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  23. Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
  24. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  25. Sielecki A. R., Hendrickson W. A., Broughton C. G., Delbaere L. T., Brayer G. D., James M. N. Protein structure refinement: Streptomyces griseus serine protease A at 1.8 A resolution. J Mol Biol. 1979 Nov 15;134(4):781–804. doi: 10.1016/0022-2836(79)90486-8. [DOI] [PubMed] [Google Scholar]
  26. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  27. Veerapandian B., Cooper J. B., Sali A., Blundell T. L. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution. J Mol Biol. 1990 Dec 20;216(4):1017–1029. doi: 10.1016/S0022-2836(99)80017-5. [DOI] [PubMed] [Google Scholar]
  28. Wistow G., Turnell B., Summers L., Slingsby C., Moss D., Miller L., Lindley P., Blundell T. X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol. 1983 Oct 15;170(1):175–202. doi: 10.1016/s0022-2836(83)80232-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES