Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Nov;2(11):1869–1881. doi: 10.1002/pro.5560021109

Mechanism of phage P22 tailspike protein folding mutations.

M Danner 1, R Seckler 1
PMCID: PMC2142274  PMID: 8268798

Abstract

Temperature-sensitive folding (tsf) and global-tsf-suppressor (su) point mutations affect the folding yields of the trimeric, thermostable phage P22 tailspike endorhamnosidase at elevated temperature, both in vivo and in vitro, but they have little effect on function and stability of the native folded protein. To delineate the mechanism by which these mutations modify the partitioning between productive folding and off-pathway aggregation, the kinetics of refolding after dilution from acid-urea solutions and the thermal stability of folding intermediates were analyzed. The study included five tsf mutations of varying severity, the two known su mutations, and four tsf/su double mutants. At low temperature (10 degrees C), subunit-folding rates, measured as an increase in fluorescence, were similar for wild-type and mutants. At 25 degrees C, however, tsf mutations reduced the rate of subunit folding. The su mutations increased this rate, when present in the tsf-mutant background, but had no effect in the wild-type background. Conversely, tsf mutations accelerated, and su mutations retarded the irreversible off-pathway reaction, as revealed by temperature down-shifts after varied times during refolding at high temperature (40 degrees C). The kinetic results are consistent with tsf mutations destabilizing and su mutations stabilizing an essential subunit folding intermediate. In accordance with this interpretation, tsf mutations decreased, and su mutations increased the temperature resistance of folding intermediates, as disclosed by temperature up-shifts during refolding at 25 degrees C. The stabilizing and destabilizing effects were most pronounced early during refolding. However, they were not limited to subunit-folding intermediates and were also observable during thermal unfolding of the native protein.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Blond-Elguindi S., Goldberg M. E. Kinetic characterization of early immunoreactive intermediates during the refolding of guanidine-unfolded Escherichia coli tryptophan synthase beta 2 subunits. Biochemistry. 1990 Mar 6;29(9):2409–2417. doi: 10.1021/bi00461a026. [DOI] [PubMed] [Google Scholar]
  3. Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
  4. Brunschier R., Danner M., Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem. 1993 Feb 5;268(4):2767–2772. [PubMed] [Google Scholar]
  5. Bycroft M., Matouschek A., Kellis J. T., Jr, Serrano L., Fersht A. R. Detection and characterization of a folding intermediate in barnase by NMR. Nature. 1990 Aug 2;346(6283):488–490. doi: 10.1038/346488a0. [DOI] [PubMed] [Google Scholar]
  6. Chen B., King J. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry. 1991 Jun 25;30(25):6260–6269. doi: 10.1021/bi00239a026. [DOI] [PubMed] [Google Scholar]
  7. Danner M., Fuchs A., Miller S., Seckler R. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain. Eur J Biochem. 1993 Aug 1;215(3):653–661. doi: 10.1111/j.1432-1033.1993.tb18076.x. [DOI] [PubMed] [Google Scholar]
  8. Fane B., Villafane R., Mitraki A., King J. Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein. J Biol Chem. 1991 Jun 25;266(18):11640–11648. [PubMed] [Google Scholar]
  9. Fuchs A., Seiderer C., Seckler R. In vitro folding pathway of phage P22 tailspike protein. Biochemistry. 1991 Jul 2;30(26):6598–6604. doi: 10.1021/bi00240a032. [DOI] [PubMed] [Google Scholar]
  10. Goldenberg D. P., King J. Temperature-sensitive mutants blocked in the folding or subunit of the bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30 degrees C. J Mol Biol. 1981 Feb 5;145(4):633–651. doi: 10.1016/0022-2836(81)90307-7. [DOI] [PubMed] [Google Scholar]
  11. Goldenberg D., King J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
  13. Lecomte J. T., Matthews C. R. Unraveling the mechanism of protein folding: new tricks for an old problem. Protein Eng. 1993 Jan;6(1):1–10. doi: 10.1093/protein/6.1.1. [DOI] [PubMed] [Google Scholar]
  14. Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., King J. Global suppression of protein folding defects and inclusion body formation. Science. 1991 Jul 5;253(5015):54–58. doi: 10.1126/science.1648264. [DOI] [PubMed] [Google Scholar]
  15. Mitraki A., King J. Amino acid substitutions influencing intracellular protein folding pathways. FEBS Lett. 1992 Jul 27;307(1):20–25. doi: 10.1016/0014-5793(92)80894-m. [DOI] [PubMed] [Google Scholar]
  16. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  17. Radford S. E., Dobson C. M., Evans P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 1992 Jul 23;358(6384):302–307. doi: 10.1038/358302a0. [DOI] [PubMed] [Google Scholar]
  18. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sargent D., Benevides J. M., Yu M. H., King J., Thomas G. J., Jr Secondary structure and thermostability of the phage P22 tailspike. XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant. J Mol Biol. 1988 Feb 5;199(3):491–502. doi: 10.1016/0022-2836(88)90620-1. [DOI] [PubMed] [Google Scholar]
  20. Seckler R., Fuchs A., King J., Jaenicke R. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J Biol Chem. 1989 Jul 15;264(20):11750–11753. [PubMed] [Google Scholar]
  21. Seckler R., Jaenicke R. Protein folding and protein refolding. FASEB J. 1992 May;6(8):2545–2552. doi: 10.1096/fasebj.6.8.1592207. [DOI] [PubMed] [Google Scholar]
  22. Smith D. H., King J. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. III. Intensive polypeptide chains synthesized at 39 degrees C. J Mol Biol. 1981 Feb 5;145(4):653–676. doi: 10.1016/0022-2836(81)90308-9. [DOI] [PubMed] [Google Scholar]
  23. Stroup A. N., Gierasch L. M. Reduced tendency to form a beta turn in peptides from the P22 tailspike protein correlates with a temperature-sensitive folding defect. Biochemistry. 1990 Oct 23;29(42):9765–9771. doi: 10.1021/bi00494a002. [DOI] [PubMed] [Google Scholar]
  24. Sturtevant J. M., Yu M. H., Haase-Pettingell C., King J. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem. 1989 Jun 25;264(18):10693–10698. [PubMed] [Google Scholar]
  25. Sugihara J., Baldwin T. O. Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants. Biochemistry. 1988 Apr 19;27(8):2872–2880. doi: 10.1021/bi00408a031. [DOI] [PubMed] [Google Scholar]
  26. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]
  27. Villafane R., King J. Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 tailspike polypeptide chain. J Mol Biol. 1988 Dec 5;204(3):607–619. doi: 10.1016/0022-2836(88)90359-2. [DOI] [PubMed] [Google Scholar]
  28. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  29. Winston F., Botstein D., Miller J. H. Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol. 1979 Jan;137(1):433–439. doi: 10.1128/jb.137.1.433-439.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yu M. H., King J. Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6584–6588. doi: 10.1073/pnas.81.21.6584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yu M. H., King J. Surface amino acids as sites of temperature-sensitive folding mutations in the P22 tailspike protein. J Biol Chem. 1988 Jan 25;263(3):1424–1431. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES