Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Nov;2(11):1931–1937. doi: 10.1002/pro.5560021114

A peptide analog of the calmodulin-binding domain of myosin light chain kinase adopts an alpha-helical structure in aqueous trifluoroethanol.

M Zhang 1, T Yuan 1, H J Vogel 1
PMCID: PMC2142276  PMID: 8268802

Abstract

A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.

Full Text

The Full Text of this article is available as a PDF (692.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A., Forsén S., Thulin E., Vogel H. J. Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry. 1983 May 10;22(10):2309–2313. doi: 10.1021/bi00279a001. [DOI] [PubMed] [Google Scholar]
  2. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal D. K., Takio K., Edelman A. M., Charbonneau H., Titani K., Walsh K. A., Krebs E. G. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci U S A. 1985 May;82(10):3187–3191. doi: 10.1073/pnas.82.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
  5. Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
  6. Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
  7. Hiraoki T., Vogel H. J. Structure and function of calcium-binding proteins. J Cardiovasc Pharmacol. 1987;10 (Suppl 1):S14–S31. doi: 10.1097/00005344-198710001-00004. [DOI] [PubMed] [Google Scholar]
  8. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  9. Ikura M., Kay L. E., Krinks M., Bax A. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. Biochemistry. 1991 Jun 4;30(22):5498–5504. doi: 10.1021/bi00236a024. [DOI] [PubMed] [Google Scholar]
  10. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  11. Knighton D. R., Pearson R. B., Sowadski J. M., Means A. R., Ten Eyck L. F., Taylor S. S., Kemp B. E. Structural basis of the intrasteric regulation of myosin light chain kinases. Science. 1992 Oct 2;258(5079):130–135. doi: 10.1126/science.1439761. [DOI] [PubMed] [Google Scholar]
  12. LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
  13. Leachman S. A., Gallagher P. J., Herring B. P., McPhaul M. J., Stull J. T. Biochemical properties of chimeric skeletal and smooth muscle myosin light chain kinases. J Biol Chem. 1992 Mar 5;267(7):4930–4938. [PMC free article] [PubMed] [Google Scholar]
  14. Lehrman S. R., Tuls J. L., Lund M. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry. 1990 Jun 12;29(23):5590–5596. doi: 10.1021/bi00475a025. [DOI] [PubMed] [Google Scholar]
  15. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  16. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  17. Means A. R., VanBerkum M. F., Bagchi I., Lu K. P., Rasmussen C. D. Regulatory functions of calmodulin. Pharmacol Ther. 1991;50(2):255–270. doi: 10.1016/0163-7258(91)90017-g. [DOI] [PubMed] [Google Scholar]
  18. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  19. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  20. Roth S. M., Schneider D. M., Strobel L. A., Van Berkum M. F., Means A. R., Wand A. J. Characterization of the secondary structure of calmodulin in complex with a calmodulin-binding domain peptide. Biochemistry. 1992 Feb 11;31(5):1443–1451. doi: 10.1021/bi00120a022. [DOI] [PubMed] [Google Scholar]
  21. Roth S. M., Schneider D. M., Strobel L. A., VanBerkum M. F., Means A. R., Wand A. J. Structure of the smooth muscle myosin light-chain kinase calmodulin-binding domain peptide bound to calmodulin. Biochemistry. 1991 Oct 22;30(42):10078–10084. doi: 10.1021/bi00106a003. [DOI] [PubMed] [Google Scholar]
  22. Seeholzer S. H., Wand A. J. Structural characterization of the interactions between calmodulin and skeletal muscle myosin light chain kinase: effect of peptide (576-594)G binding on the Ca2+-binding domains. Biochemistry. 1989 May 2;28(9):4011–4020. doi: 10.1021/bi00435a057. [DOI] [PubMed] [Google Scholar]
  23. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  24. Strynadka N. C., James M. N. Model for the interaction of amphiphilic helices with troponin C and calmodulin. Proteins. 1990;7(3):234–248. doi: 10.1002/prot.340070305. [DOI] [PubMed] [Google Scholar]
  25. Tanaka T., Hidaka H. Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem. 1980 Dec 10;255(23):11078–11080. [PubMed] [Google Scholar]
  26. Thulin E., Andersson A., Drakenberg T., Forsén S., Vogel H. J. Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies. Biochemistry. 1984 Apr 10;23(8):1862–1870. doi: 10.1021/bi00303a043. [DOI] [PubMed] [Google Scholar]
  27. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  28. Zagorski M. G., Barrow C. J. NMR studies of amyloid beta-peptides: proton assignments, secondary structure, and mechanism of an alpha-helix----beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry. 1992 Jun 23;31(24):5621–5631. doi: 10.1021/bi00139a028. [DOI] [PubMed] [Google Scholar]
  29. Zhan Q. Q., Wong S. S., Wang C. L. A calmodulin-binding peptide of caldesmon. J Biol Chem. 1991 Nov 15;266(32):21810–21814. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES