Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Nov;2(11):1959–1965. doi: 10.1002/pro.5560021117

Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase.

G C Ferreira 1, P J Neame 1, H A Dailey 1
PMCID: PMC2142290  PMID: 8268805

Abstract

5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bawden M. J., Borthwick I. A., Healy H. M., Morris C. P., May B. K., Elliott W. H. Sequence of human 5-aminolevulinate synthase cDNA. Nucleic Acids Res. 1987 Oct 26;15(20):8563–8563. doi: 10.1093/nar/15.20.8563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop D. F., Henderson A. S., Astrin K. H. Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics. 1990 Jun;7(2):207–214. doi: 10.1016/0888-7543(90)90542-3. [DOI] [PubMed] [Google Scholar]
  3. Conboy J. G., Cox T. C., Bottomley S. S., Bawden M. J., May B. K. Human erythroid 5-aminolevulinate synthase. Gene structure and species-specific differences in alternative RNA splicing. J Biol Chem. 1992 Sep 15;267(26):18753–18758. [PubMed] [Google Scholar]
  4. Cox T. C., Bawden M. J., Abraham N. G., Bottomley S. S., May B. K., Baker E., Chen L. Z., Sutherland G. R. Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am J Hum Genet. 1990 Jan;46(1):107–111. [PMC free article] [PubMed] [Google Scholar]
  5. Cox T. C., Bawden M. J., Martin A., May B. K. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 1991 Jul;10(7):1891–1902. doi: 10.1002/j.1460-2075.1991.tb07715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Esaki N., Walsh C. T. Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry. 1986 Jun 3;25(11):3261–3267. doi: 10.1021/bi00359a027. [DOI] [PubMed] [Google Scholar]
  7. Fanica-Gaignier M., Clement-Metral J. 5-Aminolevulinic-acid synthetase of Rhodopseudomonas spheroides Y. Kinetic mechanism and inhibition by ATP. Eur J Biochem. 1973 Dec 3;40(1):19–24. doi: 10.1111/j.1432-1033.1973.tb03164.x. [DOI] [PubMed] [Google Scholar]
  8. Ferreira G. C., Dailey H. A. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli. Overproduction, purification, and characterization. J Biol Chem. 1993 Jan 5;268(1):584–590. [PubMed] [Google Scholar]
  9. Gloeckler R., Ohsawa I., Speck D., Ledoux C., Bernard S., Zinsius M., Villeval D., Kisou T., Kamogawa K., Lemoine Y. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene. 1990 Mar 1;87(1):63–70. doi: 10.1016/0378-1119(90)90496-e. [DOI] [PubMed] [Google Scholar]
  10. KIKUCHI G., KUMAR A., TALMAGE P., SHEMIN D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem. 1958 Nov;233(5):1214–1219. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lien L. F., Beattie D. S. Comparisons and modifications of the colorimetric assay for delta-aminolevulinic acid synthase. Enzyme. 1982;28(2-3):120–132. doi: 10.1159/000459096. [DOI] [PubMed] [Google Scholar]
  13. May B. K., Bhasker C. R., Bawden M. J., Cox T. C. Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis. Mol Biol Med. 1990 Oct;7(5):405–421. [PubMed] [Google Scholar]
  14. McClung C. R., Somerville J. E., Guerinot M. L., Chelm B. K. Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene. 1987;54(1):133–139. doi: 10.1016/0378-1119(87)90355-6. [DOI] [PubMed] [Google Scholar]
  15. Mukherjee J. J., Dekker E. E. 2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: stoichiometry of pyridoxal phosphate binding and location of the pyridoxyllysine peptide in the primary structure of the enzyme. Biochim Biophys Acta. 1990 Jan 19;1037(1):24–29. doi: 10.1016/0167-4838(90)90097-y. [DOI] [PubMed] [Google Scholar]
  16. NEUBERGER A. Aspects of the metabolism of glycine and of porphyrins. Biochem J. 1961 Jan;78:1–10. doi: 10.1042/bj0780001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nandi D. L. Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. Arch Biochem Biophys. 1978 Jun;188(2):266–271. doi: 10.1016/s0003-9861(78)80008-3. [DOI] [PubMed] [Google Scholar]
  18. Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Otsuka A. J., Buoncristiani M. R., Howard P. K., Flamm J., Johnson C., Yamamoto R., Uchida K., Cook C., Ruppert J., Matsuzaki J. The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J Biol Chem. 1988 Dec 25;263(36):19577–19585. [PubMed] [Google Scholar]
  20. Schoenhaut D. S., Curtis P. J. Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissues. Gene. 1986;48(1):55–63. doi: 10.1016/0378-1119(86)90351-3. [DOI] [PubMed] [Google Scholar]
  21. Scholnick P. L., Hammaker L. E., Marver H. S. Soluble -aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition. J Biol Chem. 1972 Jul 10;247(13):4132–4137. [PubMed] [Google Scholar]
  22. Srivastava G., Borthwick I. A., Maguire D. J., Elferink C. J., Bawden M. J., Mercer J. F., May B. K. Regulation of 5-aminolevulinate synthase mRNA in different rat tissues. J Biol Chem. 1988 Apr 15;263(11):5202–5209. [PubMed] [Google Scholar]
  23. Sutherland G. R., Baker E., Callen D. F., Hyland V. J., May B. K., Bawden M. J., Healy H. M., Borthwick I. A. 5-Aminolevulinate synthase is at 3p21 and thus not the primary defect in X-linked sideroblastic anemia. Am J Hum Genet. 1988 Sep;43(3):331–335. [PMC free article] [PubMed] [Google Scholar]
  24. Urban-Grimal D., Volland C., Garnier T., Dehoux P., Labbe-Bois R. The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. Eur J Biochem. 1986 May 2;156(3):511–519. doi: 10.1111/j.1432-1033.1986.tb09610.x. [DOI] [PubMed] [Google Scholar]
  25. Yamauchi K., Hayashi N., Kikuchi G. Translocation of delta-aminolevulinate synthase from the cytosol to the mitochondria and its regulation by hemin in the rat liver. J Biol Chem. 1980 Feb 25;255(4):1746–1751. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES