Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Dec;2(12):2206–2216. doi: 10.1002/pro.5560021220

Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity.

J Safar 1, P P Roller 1, D C Gajdusek 1, C J Gibbs Jr 1
PMCID: PMC2142321  PMID: 7905316

Abstract

The scrapie amyloid (prion) protein (PrP27-30) is the protease-resistant core of a larger precursor (PrPSc) and a component of the infectious scrapie agent; the potential to form amyloid is a result of posttranslational event or conformational abnormality. The conformation, heat stability, and solvent-induced conformational transitions of PrP27-30 were studied in the solid state in films by CD spectroscopy and correlated with the infectivity of rehydrated and equilibrated films. The exposure of PrP27-30 in films to 60 degrees C, 100 degrees C, and 132 degrees C for 30 min did not change the beta-sheet secondary structure; the infectivity slightly diminished at 132 degrees C and correlated with a decreased solubility of PrP27-30 in sodium dodecyl sulfate (SDS), probably due to cross-linking. Exposing PrP27-30 films to formic acid (FA), trifluoroacetic acid (TFA), trifluoroethanol (TFE), hexafluoro-2-propanol (HFIP), and SDS transformed the amide CD band, diminished the mean residue ellipticity of aromatic bands, and inactivated scrapie infectivity. The convex constraint algorithm (CAA) deconvolution of the CD spectra of the solvent-exposed and rehydrated solid state PrP27-30 identified five common spectral components. The loss of infectivity quantitatively correlated with a decreasing proportion of native, beta-pleated sheet-like secondary structure component, an increasing amount of alpha-helical component, and an increasingly disordered tertiary structure. The results demonstrate the unusual thermal stability of the beta-sheet secondary structure of PrP27-30 protein in the solid state. The conformational perturbations of PrP27-30 parallel the changes in infectivity and suggest that the beta-sheet structure plays a key role in the physical stability of scrapie amyloid and in the ability to propagate and replicate scrapie.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
  2. Brown P., Liberski P. P., Wolff A., Gajdusek D. C. Resistance of scrapie infectivity to steam autoclaving after formaldehyde fixation and limited survival after ashing at 360 degrees C: practical and theoretical implications. J Infect Dis. 1990 Mar;161(3):467–472. doi: 10.1093/infdis/161.3.467. [DOI] [PubMed] [Google Scholar]
  3. Caughey B. W., Dong A., Bhat K. S., Ernst D., Hayes S. F., Caughey W. S. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry. 1991 Aug 6;30(31):7672–7680. doi: 10.1021/bi00245a003. [DOI] [PubMed] [Google Scholar]
  4. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ewbank J. J., Creighton T. E. The molten globule protein conformation probed by disulphide bonds. Nature. 1991 Apr 11;350(6318):518–520. doi: 10.1038/350518a0. [DOI] [PubMed] [Google Scholar]
  6. Gajdusek D. C. Transmissible and nontransmissible dementias: distinction between primary cause and pathogenetic mechanisms in Alzheimer's disease and aging. Mt Sinai J Med. 1988 Jan;55(1):3–5. [PubMed] [Google Scholar]
  7. Hecker R., Taraboulos A., Scott M., Pan K. M., Yang S. L., Torchia M., Jendroska K., DeArmond S. J., Prusiner S. B. Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters. Genes Dev. 1992 Jul;6(7):1213–1228. doi: 10.1101/gad.6.7.1213. [DOI] [PubMed] [Google Scholar]
  8. Hollósi M., Urge L., Perczel A., Kajtár J., Teplán I., Otvös L., Jr, Fasman G. D. Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein. J Mol Biol. 1992 Feb 5;223(3):673–682. doi: 10.1016/0022-2836(92)90983-q. [DOI] [PubMed] [Google Scholar]
  9. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  10. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
  11. Jaenicke R., Rudolph R. Refolding and association of oligomeric proteins. Methods Enzymol. 1986;131:218–250. doi: 10.1016/0076-6879(86)31043-7. [DOI] [PubMed] [Google Scholar]
  12. Kimberlin R. H., Walker C. A., Fraser H. The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J Gen Virol. 1989 Aug;70(Pt 8):2017–2025. doi: 10.1099/0022-1317-70-8-2017. [DOI] [PubMed] [Google Scholar]
  13. Matthews C. R., Crisanti M. M. Urea-induced unfolding of the alpha subunit of tryptophan synthase: evidence for a multistate process. Biochemistry. 1981 Feb 17;20(4):784–792. doi: 10.1021/bi00507a021. [DOI] [PubMed] [Google Scholar]
  14. Miick S. M., Martinez G. V., Fiori W. R., Todd A. P., Millhauser G. L. Short alanine-based peptides may form 3(10)-helices and not alpha-helices in aqueous solution. Nature. 1992 Oct 15;359(6396):653–655. doi: 10.1038/359653a0. [DOI] [PubMed] [Google Scholar]
  15. Nakajima A., Fujiwara T., Hayashi T., Kaji K. Occurrence of beta-chain conformation in poly-gamma-methyl glutamate membranes. Biopolymers. 1973 Dec;12(12):2681–2690. doi: 10.1002/bip.1973.360121205. [DOI] [PubMed] [Google Scholar]
  16. Park K., Flynn G. C., Rothman J. E., Fasman G. D. Conformational change of chaperone Hsc70 upon binding to a decapeptide: a circular dichroism study. Protein Sci. 1993 Mar;2(3):325–330. doi: 10.1002/pro.5560020304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Perczel A., Fasman G. D. Quantitative analysis of cyclic beta-turn models. Protein Sci. 1992 Mar;1(3):378–395. doi: 10.1002/pro.5560010310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
  19. Prusiner S. B., Cochran S. P., Groth D. F., Downey D. E., Bowman K. A., Martinez H. M. Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol. 1982 Apr;11(4):353–358. doi: 10.1002/ana.410110406. [DOI] [PubMed] [Google Scholar]
  20. Prusiner S. B., Groth D., Serban A., Stahl N., Gabizon R. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2793–2797. doi: 10.1073/pnas.90.7.2793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., Glenner G. G. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983 Dec;35(2 Pt 1):349–358. doi: 10.1016/0092-8674(83)90168-x. [DOI] [PubMed] [Google Scholar]
  22. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  23. Rohwer R. G. Virus like sensitivity of the scrapie agent to heat inactivation. Science. 1984 Feb 10;223(4636):600–602. doi: 10.1126/science.6420887. [DOI] [PubMed] [Google Scholar]
  24. Safar J., Roller P. P., Ruben G. C., Gajdusek D. C., Gibbs C. J., Jr Secondary structure of proteins associated in thin films. Biopolymers. 1993 Sep;33(9):1461–1476. doi: 10.1002/bip.360330915. [DOI] [PubMed] [Google Scholar]
  25. Safar J., Wang W., Padgett M. P., Ceroni M., Piccardo P., Zopf D., Gajdusek D. C., Gibbs C. J., Jr Molecular mass, biochemical composition, and physicochemical behavior of the infectious form of the scrapie precursor protein monomer. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6373–6377. doi: 10.1073/pnas.87.16.6373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  27. Stevens E. S. Far (vacuum) ultraviolet circular dichroism. Methods Enzymol. 1978;49:214–221. doi: 10.1016/s0076-6879(78)49011-1. [DOI] [PubMed] [Google Scholar]
  28. Stevens L., Townend R., Timasheff S. N., Fasman G. D., Potter J. The circular dichroism of polypeptide films. Biochemistry. 1968 Oct;7(10):3717–3720. doi: 10.1021/bi00850a051. [DOI] [PubMed] [Google Scholar]
  29. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES