Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Dec;2(12):2103–2111. doi: 10.1002/pro.5560021211

Identification of the amino acids comprising a surface-exposed epitope within the nucleotide-binding domain of the Na+,K(+)-ATPase using a random peptide library.

B Malik 1, G A Jamieson Jr 1, W J Ball Jr 1
PMCID: PMC2142322  PMID: 7507752

Abstract

Monoclonal antibodies that bind native protein can generate considerable information about structure/function relationships, but identification of their epitopes can be problematic. Previously, monoclonal antibody M8-P1-A3 has been shown to bind to the catalytic (alpha) subunit of the Na+,K(+)-ATPase holoenzyme and the synthetic peptide sequence 496-HLLVMK*GAPER-506, which includes Lys 501 (K*), the major site for fluorescein-5'-isothiocyanate labeling of the Na+,K(+)-ATPase. This sequence region of alpha is proposed to comprise a portion of the enzyme's ATP binding domain (Taylor, W. R. & Green, N. W., 1989, Eur. J. Biochem. 179, 241-248). In this study we have determined M8-P1-A3's ability to recognize the alpha-subunit or homologous E1E2-ATPase proteins from different species and tissues in order to deduce the antibody's epitope. In addition the bacteriophage random peptide or "epitope" library, recently developed by Scott and Smith (1990, Science 249, 386-390) and Devlin et al. (Devlin, J. J., Panganiban, L. C., & Devlin, P. E., 1990, Science 249, 404-406), has served as a convenient technique to confirm the species-specificity mapping data and to determine the exact amino acid requirements for antibody binding. The M8-P1-A3 epitope was found to consist of the five amino acid 494-PRHLL-498 sequence stretch of alpha, with residues PRxLx being critical for antibody recognition.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott A. J., Amler E., Ball W. J., Jr Immunochemical and spectroscopic characterization of two fluorescein 5'-isothiocyanate labeling sites on Na+,K(+)-ATPase. Biochemistry. 1991 Feb 12;30(6):1692–1701. doi: 10.1021/bi00220a035. [DOI] [PubMed] [Google Scholar]
  2. Abbott A., Ball W. J., Jr The epitope for the inhibitory antibody M7-PB-E9 contains Ser-646 and Asp-652 of the sheep Na+,K(+)-ATPase alpha-subunit. Biochemistry. 1993 Apr 6;32(13):3511–3518. doi: 10.1021/bi00064a040. [DOI] [PubMed] [Google Scholar]
  3. Abbott A., Ball W. J., Jr The inhibitory monoclonal antibody M7-PB-E9 stabilizes E2 conformational states of Na+,K(+)-ATPase. Biochemistry. 1992 Nov 17;31(45):11236–11243. doi: 10.1021/bi00160a039. [DOI] [PubMed] [Google Scholar]
  4. Ball W. J., Jr, Friedman M. L. Immunochemical evidence that the FITC-labeling site on Na+,K+-ATPase is not the ATP binding site. Biochem Biophys Res Commun. 1987 Oct 14;148(1):246–253. doi: 10.1016/0006-291x(87)91102-8. [DOI] [PubMed] [Google Scholar]
  5. Ball W. J., Jr, Kirley T. L., Lane L. K. Preparation of antibodies to Na+,K+-ATPase and its subunits. Methods Enzymol. 1988;156:87–101. doi: 10.1016/0076-6879(88)56012-3. [DOI] [PubMed] [Google Scholar]
  6. Ball W. J., Jr, Lane L. K. Immunochemical comparison of cardiac glycoside-sensitive (lamb) and -insensitive (rat) kidney (Na+ + K+)-ATPase. Biochim Biophys Acta. 1986 Sep 5;873(1):79–87. doi: 10.1016/0167-4838(86)90192-5. [DOI] [PubMed] [Google Scholar]
  7. Ball W. J., Jr, Loftice C. D. Immunochemical studies of (Na+ + K+)-ATPase using site-specific, synthetic peptide directed antibodies. Biochim Biophys Acta. 1987 Nov 5;916(1):100–111. doi: 10.1016/0167-4838(87)90216-0. [DOI] [PubMed] [Google Scholar]
  8. Ball W. J., Jr, Schwartz A. Studies of the antigenic properties of sheep kidney Na+,K+-ATPase. Arch Biochem Biophys. 1982 Aug;217(1):110–119. doi: 10.1016/0003-9861(82)90484-2. [DOI] [PubMed] [Google Scholar]
  9. Ball W. J., Jr Uncoupling of ATP binding to Na+,K+-ATPase from its stimulation of ouabain binding: studies of the inhibition of Na+,K+-ATPase by a monoclonal antibody. Biochemistry. 1986 Nov 4;25(22):7155–7162. doi: 10.1021/bi00370a058. [DOI] [PubMed] [Google Scholar]
  10. Ball W. J., Schwartz A., Lessard J. L. Isolation and characterization of monoclonal antibodies to (Na+ + K+)-ATPase. Biochim Biophys Acta. 1982 Dec 17;719(3):413–423. doi: 10.1016/0304-4165(82)90228-8. [DOI] [PubMed] [Google Scholar]
  11. Cesareni G. Peptide display on filamentous phage capsids. A new powerful tool to study protein-ligand interaction. FEBS Lett. 1992 Jul 27;307(1):66–70. doi: 10.1016/0014-5793(92)80903-t. [DOI] [PubMed] [Google Scholar]
  12. Devlin J. J., Panganiban L. C., Devlin P. E. Random peptide libraries: a source of specific protein binding molecules. Science. 1990 Jul 27;249(4967):404–406. doi: 10.1126/science.2143033. [DOI] [PubMed] [Google Scholar]
  13. Friedman M. L., Ball W. J., Jr Determination of monoclonal antibody-induced alterations in Na+/K+-ATPase conformations using fluorescein-labeled enzyme. Biochim Biophys Acta. 1989 Mar 16;995(1):42–53. doi: 10.1016/0167-4838(89)90231-8. [DOI] [PubMed] [Google Scholar]
  14. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  15. Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  16. Green N. M., Stokes D. L. Structural modelling of P-type ion pumps. Acta Physiol Scand Suppl. 1992;607:59–68. [PubMed] [Google Scholar]
  17. Hegyvary C., Jorgensen P. L. Conformational changes of renal sodium plus potassium ion-transport adenosine triphosphatase labeled with fluorescein. J Biol Chem. 1981 Jun 25;256(12):6296–6303. [PubMed] [Google Scholar]
  18. Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
  19. Karlish S. J. Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr. 1980 Aug;12(3-4):111–136. doi: 10.1007/BF00744678. [DOI] [PubMed] [Google Scholar]
  20. Kirley T. L., Wallick E. T., Lane L. K. The amino acid sequence of the fluorescein isothiocyanate reactive site of lamb and rat kidney Na+- and K+-dependent ATPase. Biochem Biophys Res Commun. 1984 Dec 14;125(2):767–773. doi: 10.1016/0006-291x(84)90605-3. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lane L. K., Kirley T. L., Ball W. J., Jr Structural studies on H+,K+-ATPase: determination of the NH2-terminal amino acid sequence and immunological cross-reactivity with Na+,K+-ATPase. Biochem Biophys Res Commun. 1986 Jul 16;138(1):185–192. doi: 10.1016/0006-291x(86)90264-0. [DOI] [PubMed] [Google Scholar]
  23. Lane L. K., Potter J. D., Collins J. H. Large-scale purification of Na,K-ATPase and its protein subunits from lamb kidney medulla. Prep Biochem. 1979;9(2):157–170. doi: 10.1080/00327487908061681. [DOI] [PubMed] [Google Scholar]
  24. Maeda M., Ishizaki J., Futai M. cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase. Biochem Biophys Res Commun. 1988 Nov 30;157(1):203–209. doi: 10.1016/s0006-291x(88)80033-0. [DOI] [PubMed] [Google Scholar]
  25. Maruyama K., Clarke D. M., Fujii J., Inesi G., Loo T. W., MacLennan D. H. Functional consequences of alterations to amino acids located in the catalytic center (isoleucine 348 to threonine 357) and nucleotide-binding domain of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Aug 5;264(22):13038–13042. [PubMed] [Google Scholar]
  26. Parmley S. F., Smith G. P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene. 1988 Dec 20;73(2):305–318. doi: 10.1016/0378-1119(88)90495-7. [DOI] [PubMed] [Google Scholar]
  27. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  28. Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
  29. Taylor W. R., Green N. M. The predicted secondary structures of the nucleotide-binding sites of six cation-transporting ATPases lead to a probable tertiary fold. Eur J Biochem. 1989 Jan 15;179(1):241–248. doi: 10.1111/j.1432-1033.1989.tb14547.x. [DOI] [PubMed] [Google Scholar]
  30. Tunwell R. E., Conlan J. W., Matthews I., East J. M., Lee A. G. Definition of surface-exposed epitopes on the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum. Biochem J. 1991 Oct 1;279(Pt 1):203–212. doi: 10.1042/bj2790203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tunwell R. E., O'Connor C. D., Mata A. M., East J. M., Lee A. G. Mapping epitopes on the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum using fusion proteins. Biochim Biophys Acta. 1991 Apr 9;1073(3):585–592. doi: 10.1016/0304-4165(91)90234-8. [DOI] [PubMed] [Google Scholar]
  32. Van Uem T. J., Swarts H. G., De Pont J. J. Determination of the epitope for the inhibitory monoclonal antibody 5-B6 on the catalytic subunit of gastric Mg(2+)-dependent H(+)-transporting and K(+)-stimulated ATPase. Biochem J. 1991 Nov 15;280(Pt 1):243–248. doi: 10.1042/bj2800243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xu K. Y., Kyte J. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate. Biochemistry. 1989 Apr 4;28(7):3009–3017. doi: 10.1021/bi00433a041. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES