Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Dec;2(12):2050–2065. doi: 10.1002/pro.5560021206

Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation.

P D Thomas 1, K A Dill 1
PMCID: PMC2142326  PMID: 8298455

Abstract

How important are helical propensities in determining the conformations of globular proteins? Using the two-dimensional lattice model and two monomer types, H (hydrophobic) and P (polar), we explore both nonlocal interactions, through an HH contact energy, epsilon, as developed in earlier work, and local interactions, through a helix energy, sigma. By computer enumeration, the partition functions for short chains are obtained without approximation for the full range of both types of energy. When nonlocal interactions dominate, some sequences undergo coil-globule collapse to a unique native structure. When local interactions dominate, all sequences undergo helix-coil transitions. For two different conformational properties, the closest correspondence between the lattice model and proteins in the Protein Data Bank is obtained if the model local interactions are made small compared to the HH contact interaction, suggesting that helical propensities may be only weak determinants of globular protein structures in water. For some HP sequences, varying sigma/epsilon leads to additional sharp transitions (sometimes several) and to "conformational switching" between unique conformations. This behavior resembles the transitions of globular proteins in water to helical states in alcohols. In particular, comparison with experiments shows that whereas urea as a denaturant is best modeled as weakening both local and nonlocal interactions, trifluoro-ethanol is best modeled as mainly weakening HH interactions and slightly enhancing local helical interactions.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Goddette D. The mechanism of helical transition of proteins by organic solvents. Arch Biochem Biophys. 1985 Jul;240(1):21–32. doi: 10.1016/0003-9861(85)90004-9. [DOI] [PubMed] [Google Scholar]
  3. Buck M., Radford S. E., Dobson C. M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993 Jan 19;32(2):669–678. doi: 10.1021/bi00053a036. [DOI] [PubMed] [Google Scholar]
  4. Chan H. S., Dill K. A. Origins of structure in globular proteins. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6388–6392. doi: 10.1073/pnas.87.16.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan H. S., Dill K. A. Polymer principles in protein structure and stability. Annu Rev Biophys Biophys Chem. 1991;20:447–490. doi: 10.1146/annurev.bb.20.060191.002311. [DOI] [PubMed] [Google Scholar]
  6. Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Wells M., Fasman G. D. Conformational studies on copolymers of hydroxypropyl-L-glutamine and L-leucine. Circular dichroism studies. Biochemistry. 1972 Aug 1;11(16):3028–3043. doi: 10.1021/bi00766a015. [DOI] [PubMed] [Google Scholar]
  9. Dufour E., Haertlé T. Alcohol-induced changes of beta-lactoglobulin-retinol-binding stoichiometry. Protein Eng. 1990 Dec;4(2):185–190. doi: 10.1093/protein/4.2.185. [DOI] [PubMed] [Google Scholar]
  10. Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
  11. Egan D. A., Logan T. M., Liang H., Matayoshi E., Fesik S. W., Holzman T. F. Equilibrium denaturation of recombinant human FK binding protein in urea. Biochemistry. 1993 Mar 2;32(8):1920–1927. doi: 10.1021/bi00059a006. [DOI] [PubMed] [Google Scholar]
  12. Fan P., Bracken C., Baum J. Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for beta-sheet to alpha-helix conversion. Biochemistry. 1993 Feb 16;32(6):1573–1582. doi: 10.1021/bi00057a023. [DOI] [PubMed] [Google Scholar]
  13. Gregoret L. M., Cohen F. E. Protein folding. Effect of packing density on chain conformation. J Mol Biol. 1991 May 5;219(1):109–122. doi: 10.1016/0022-2836(91)90861-y. [DOI] [PubMed] [Google Scholar]
  14. Harding M. M., Williams D. H., Woolfson D. N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 1991 Mar 26;30(12):3120–3128. doi: 10.1021/bi00226a020. [DOI] [PubMed] [Google Scholar]
  15. Jackson M., Mantsch H. H. Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochim Biophys Acta. 1992 Jan 9;1118(2):139–143. doi: 10.1016/0167-4838(92)90141-y. [DOI] [PubMed] [Google Scholar]
  16. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  17. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  18. Lau K. F., Dill K. A. Theory for protein mutability and biogenesis. Proc Natl Acad Sci U S A. 1990 Jan;87(2):638–642. doi: 10.1073/pnas.87.2.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehrman S. R., Tuls J. L., Lund M. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry. 1990 Jun 12;29(23):5590–5596. doi: 10.1021/bi00475a025. [DOI] [PubMed] [Google Scholar]
  20. Lipman D. J., Wilbur W. J. Modelling neutral and selective evolution of protein folding. Proc Biol Sci. 1991 Jul 22;245(1312):7–11. doi: 10.1098/rspb.1991.0081. [DOI] [PubMed] [Google Scholar]
  21. Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
  22. Nandi P. K., Robinson D. R. Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry. 1984 Dec 18;23(26):6661–6668. doi: 10.1021/bi00321a058. [DOI] [PubMed] [Google Scholar]
  23. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  24. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  25. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  26. ROBINSON D. R., JENCKS W. P. THE EFFECT OF COMPOUNDS OF THE UREA-GUANIDINIUM CLASS ON THE ACTIVITY COEFFICIENT OF ACETYLTETRAGLYCINE ETHYL ESTER AND RELATED COMPOUNDS. J Am Chem Soc. 1965 Jun 5;87:2462–2470. doi: 10.1021/ja01089a028. [DOI] [PubMed] [Google Scholar]
  27. Rees D. C., DeAntonio L., Eisenberg D. Hydrophobic organization of membrane proteins. Science. 1989 Aug 4;245(4917):510–513. doi: 10.1126/science.2667138. [DOI] [PubMed] [Google Scholar]
  28. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  29. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  30. Shortle D., Chan H. S., Dill K. A. Modeling the effects of mutations on the denatured states of proteins. Protein Sci. 1992 Feb;1(2):201–215. doi: 10.1002/pro.5560010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
  32. Stone A. L., Park J. Y., Martenson R. E. Low-ultraviolet circular dichroism spectroscopy of oligopeptides 1-95 and 96-168 derived from myelin basic protein of rabbit. Biochemistry. 1985 Nov 5;24(23):6666–6673. doi: 10.1021/bi00344a055. [DOI] [PubMed] [Google Scholar]
  33. Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
  34. Tamburro A. M., Scatturin A., Rocchi R., Marchiori F., Borin G., Scoffone E. Conformational-transitions of bovine pancreatic ribonuclease S-peptide. FEBS Lett. 1968 Oct;1(5):298–300. doi: 10.1016/0014-5793(68)80137-1. [DOI] [PubMed] [Google Scholar]
  35. Unger R., Moult J. Genetic algorithms for protein folding simulations. J Mol Biol. 1993 May 5;231(1):75–81. doi: 10.1006/jmbi.1993.1258. [DOI] [PubMed] [Google Scholar]
  36. Von Hippel P. H., Wong K. Y. On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J Biol Chem. 1965 Oct;240(10):3909–3923. [PubMed] [Google Scholar]
  37. Wilkinson K. D., Mayer A. N. Alcohol-induced conformational changes of ubiquitin. Arch Biochem Biophys. 1986 Nov 1;250(2):390–399. doi: 10.1016/0003-9861(86)90741-1. [DOI] [PubMed] [Google Scholar]
  38. Yee D. P., Dill K. A. Families and the structural relatedness among globular proteins. Protein Sci. 1993 Jun;2(6):884–899. doi: 10.1002/pro.5560020603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES