Abstract
A calorimetric study of the basic pancreatic trypsin inhibitor (BPTI) has been performed using the new generation of the adiabatic scanning microcalorimeters, operating in an extended temperature range of 5-130 degrees C. Precise measurements of the heat capacities of the native and unfolded states of BPTI show that the heat capacity change upon unfolding strongly depends on temperature; its value is maximal at about 50 degrees C and diminishes as the temperature is increased. The temperature dependencies of the enthalpy and entropy changes upon BPTI unfolding were found to be similar to those normally observed for other small globular proteins. The stability of BPTI has been correlated with its structure.
Full Text
The Full Text of this article is available as a PDF (782.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amir D., Haas E. Reduced bovine pancreatic trypsin inhibitor has a compact structure. Biochemistry. 1988 Dec 13;27(25):8889–8893. doi: 10.1021/bi00425a003. [DOI] [PubMed] [Google Scholar]
- Amir D., Krausz S., Haas E. Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor. Proteins. 1992 Apr;13(2):162–173. doi: 10.1002/prot.340130210. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
- Danishefsky A. T., Housset D., Kim K. S., Tao F., Fuchs J., Woodward C., Wlodawer A. Crevice-forming mutants in the rigid core of bovine pancreatic trypsin inhibitor: crystal structures of F22A, Y23A, N43G, and F45A. Protein Sci. 1993 Apr;2(4):577–587. doi: 10.1002/pro.5560020409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eigenbrot C., Randal M., Kossiakoff A. A. Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6 A. Protein Eng. 1990 Jul;3(7):591–598. doi: 10.1093/protein/3.7.591. [DOI] [PubMed] [Google Scholar]
- Ferrer M., Woodward C., Barany G. Solid-phase synthesis of bovine pancreatic trypsin inhibitor (BPTI) and two analogues. A chemical approach for evaluating the role of disulfide bridges in protein folding and stability. Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):194–207. [PubMed] [Google Scholar]
- Gallagher W. H., Woodward C. K. The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: a dynamic light scattering study of a small protein. Biopolymers. 1989 Nov;28(11):2001–2024. doi: 10.1002/bip.360281115. [DOI] [PubMed] [Google Scholar]
- Goldenberg D. P., Bekeart L. S., Laheru D. A., Zhou J. D. Probing the determinants of disulfide stability in native pancreatic trypsin inhibitor. Biochemistry. 1993 Mar 23;32(11):2835–2844. doi: 10.1021/bi00062a015. [DOI] [PubMed] [Google Scholar]
- Goldenberg D. P., Berger J. M., Laheru D. A., Wooden S., Zhang J. X. Genetic dissection of pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5083–5087. doi: 10.1073/pnas.89.11.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldenberg D. P., Zhang J. X. Small effects of amino acid replacements on the reduced and unfolded state of pancreatic trypsin inhibitor. Proteins. 1993 Mar;15(3):322–329. doi: 10.1002/prot.340150309. [DOI] [PubMed] [Google Scholar]
- Gussakovsky E. E., Haas E. The compact state of reduced bovine pancreatic trypsin inhibitor is not the compact molten globule. FEBS Lett. 1992 Aug 17;308(2):146–148. doi: 10.1016/0014-5793(92)81263-l. [DOI] [PubMed] [Google Scholar]
- Housset D., Kim K. S., Fuchs J., Woodward C., Wlodawer A. Crystal structure of a Y35G mutant of bovine pancreatic trypsin inhibitor. J Mol Biol. 1991 Aug 5;220(3):757–770. doi: 10.1016/0022-2836(91)90115-m. [DOI] [PubMed] [Google Scholar]
- Kim K. S., Tao F., Fuchs J., Danishefsky A. T., Housset D., Wlodawer A., Woodward C. Crevice-forming mutants of bovine pancreatic trypsin inhibitor: stability changes and new hydrophobic surface. Protein Sci. 1993 Apr;2(4):588–596. doi: 10.1002/pro.5560020410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitaguchi N., Takahashi Y., Tokushima Y., Shiojiri S., Ito H. Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature. 1988 Feb 11;331(6156):530–532. doi: 10.1038/331530a0. [DOI] [PubMed] [Google Scholar]
- Klibanov A. M. Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol. 1983;29:1–28. doi: 10.1016/s0065-2164(08)70352-6. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Medvedkin V. N., Privalov P. L. Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Biopolymers. 1990;30(11-12):1001–1010. doi: 10.1002/bip.360301102. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
- March K. L., Maskalick D. G., England R. D., Friend S. H., Gurd F. R. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. Biochemistry. 1982 Oct 12;21(21):5241–5251. doi: 10.1021/bi00264a020. [DOI] [PubMed] [Google Scholar]
- Ponte P., Gonzalez-DeWhitt P., Schilling J., Miller J., Hsu D., Greenberg B., Davis K., Wallace W., Lieberburg I., Fuller F. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature. 1988 Feb 11;331(6156):525–527. doi: 10.1038/331525a0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Griko YuV, Venyaminov SYu, Kutyshenko V. P. Cold denaturation of myoglobin. J Mol Biol. 1986 Aug 5;190(3):487–498. doi: 10.1016/0022-2836(86)90017-3. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Makhatadze G. I. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. J Mol Biol. 1992 Apr 5;224(3):715–723. doi: 10.1016/0022-2836(92)90555-x. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Rashin A. A. Buried surface area, conformational entropy, and protein stability. Biopolymers. 1984 Aug;23(8):1605–1620. doi: 10.1002/bip.360230813. [DOI] [PubMed] [Google Scholar]
- Schwarz H., Hinz H. J., Mehlich A., Tschesche H., Wenzel H. R. Stability studies on derivatives of the bovine pancreatic trypsin inhibitor. Biochemistry. 1987 Jun 16;26(12):3544–3551. doi: 10.1021/bi00386a044. [DOI] [PubMed] [Google Scholar]
- Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
- Tanzi R. E., McClatchey A. I., Lamperti E. D., Villa-Komaroff L., Gusella J. F., Neve R. L. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature. 1988 Feb 11;331(6156):528–530. doi: 10.1038/331528a0. [DOI] [PubMed] [Google Scholar]
- Winder A. F., Gent W. L. Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers. 1971;10(7):1243–1251. doi: 10.1002/bip.360100713. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Walter J., Huber R., Sjölin L. Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J Mol Biol. 1984 Dec 5;180(2):301–329. doi: 10.1016/s0022-2836(84)80006-6. [DOI] [PubMed] [Google Scholar]
- Wun T. C., Kretzmer K. K., Girard T. J., Miletich J. P., Broze G. J., Jr Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J Biol Chem. 1988 May 5;263(13):6001–6004. [PubMed] [Google Scholar]
- Yu X., Egelman E. H. DNA conformation induced by the bacteriophage T4 UvsX protein appears identical to the conformation induced by the Escherichia coli RecA protein. J Mol Biol. 1993 Jul 5;232(1):1–4. doi: 10.1006/jmbi.1993.1363. [DOI] [PubMed] [Google Scholar]
- Zipp A., Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry. 1973 Oct 9;12(21):4217–4228. doi: 10.1021/bi00745a028. [DOI] [PubMed] [Google Scholar]