Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Dec;2(12):2085–2094. doi: 10.1002/pro.5560021209

Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1-1: microconformational changes induced by S-hexyl glutathione.

R W Wang 1, A W Bird 1, D J Newton 1, A Y Lu 1, W M Atkins 1
PMCID: PMC2142333  PMID: 8298458

Abstract

The glutathione S-transferase (GST) isoenzyme A1-1 from rat contains a single tryptophan, Trp 21, which is expected to lie within alpha-helix 1 based on comparison with the X-ray crystal structures of the pi- and mu-class enzymes. Steady-state and multifrequency phase/modulation fluorescence studies have been performed in order to characterize the fluorescence parameters of this tryptophan and to document ligand-induced conformational changes in this region of the protein. Addition of S-hexyl glutathione to GST isoenzyme A1-1 causes an increase in the steady-state fluorescence intensity, whereas addition of the substrate glutathione has no effect. Frequency-domain excited-state lifetime measurements indicate that Trp 21 exhibits three exponential decays in substrate-free GST. In the presence of S-hexyl glutathione, the data are also best described by the sum of three exponential decays, but the recovered lifetime values change. For the substrate-free protein, the short lifetime component contributes 9-16% of the total intensity at four wavelengths spanning the emission. The fractional intensity of this lifetime component is decreased to less than 3% in the presence of S-hexyl glutathione. Steady-state quenching experiments indicate that Trp 21 is insensitive to quenching by iodide, but it is readily quenched by acrylamide. Acrylamide-quenching experiments at several emission wavelengths indicate that the long-wavelength components become quenched more easily in the presence of S-hexyl glutathione. Differential fluorescence polarization measurements also have been performed, and the data describe the sum of two anisotropy decay rates. The recovered rotational correlation times for this model are 26 ns and 0.81 ns, which can be attributed to global motion of the protein dimer, and fast local motion of the tryptophan side chain. These results demonstrate that regions of GST that are not in direct contact with bound substrates are mobile and undergo microconformational rearrangement when the "H-site" is occupied.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J. 1987 Jun;51(6):925–936. doi: 10.1016/S0006-3495(87)83420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong R. N. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol. 1991 Mar-Apr;4(2):131–140. doi: 10.1021/tx00020a001. [DOI] [PubMed] [Google Scholar]
  3. Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
  4. Caccuri A. M., Aceto A., Rosato N., Di Ilio C., Piemonte F., Federici G. Intrinsic fluorescence quenching of glutathione transferase pi by glutathione binding. Ital J Biochem. 1991 Sep-Oct;40(5):304–311. [PubMed] [Google Scholar]
  5. Graminski G. F., Kubo Y., Armstrong R. N. Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione S-transferase. Biochemistry. 1989 Apr 18;28(8):3562–3568. doi: 10.1021/bi00434a062. [DOI] [PubMed] [Google Scholar]
  6. Hutnik C. M., Szabo A. G. A time-resolved fluorescence study of azurin and metalloazurin derivatives. Biochemistry. 1989 May 2;28(9):3935–3939. doi: 10.1021/bi00435a046. [DOI] [PubMed] [Google Scholar]
  7. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
  8. Kong K. H., Inoue H., Takahashi K. Site-directed mutagenesis study on the roles of evolutionally conserved aspartic acid residues in human glutathione S-transferase P1-1. Protein Eng. 1993 Jan;6(1):93–99. doi: 10.1093/protein/6.1.93. [DOI] [PubMed] [Google Scholar]
  9. Liu S., Zhang P., Ji X., Johnson W. W., Gilliland G. L., Armstrong R. N. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem. 1992 Mar 5;267(7):4296–4299. [PubMed] [Google Scholar]
  10. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  11. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol. 1985;57:357–417. doi: 10.1002/9780470123034.ch5. [DOI] [PubMed] [Google Scholar]
  12. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Penington C. J., Rule G. S. Mapping the substrate-binding site of a human class mu glutathione transferase using nuclear magnetic resonance spectroscopy. Biochemistry. 1992 Mar 24;31(11):2912–2920. doi: 10.1021/bi00126a010. [DOI] [PubMed] [Google Scholar]
  14. Reinemer P., Dirr H. W., Ladenstein R., Huber R., Lo Bello M., Federici G., Parker M. W. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–226. doi: 10.1016/0022-2836(92)90692-d. [DOI] [PubMed] [Google Scholar]
  15. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Royer C. A., Gardner J. A., Beechem J. M., Brochon J. C., Matthews K. S. Resolution of the fluorescence decay of the two tryptophan residues of lac repressor using single tryptophan mutants. Biophys J. 1990 Aug;58(2):363–378. doi: 10.1016/S0006-3495(90)82383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Royer C. A., Hinck A. P., Loh S. N., Prehoda K. E., Peng X., Jonas J., Markley J. L. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry. 1993 May 18;32(19):5222–5232. doi: 10.1021/bi00070a034. [DOI] [PubMed] [Google Scholar]
  18. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  19. Stayton P. S., Sligar S. G. Structural microheterogeneity of a tryptophan residue required for efficient biological electron transfer between putidaredoxin and cytochrome P-450cam. Biochemistry. 1991 Feb 19;30(7):1845–1851. doi: 10.1021/bi00221a017. [DOI] [PubMed] [Google Scholar]
  20. Wang R. W., Newton D. J., Huskey S. E., McKeever B. M., Pickett C. B., Lu A. Y. Site-directed mutagenesis of glutathione S-transferase YaYa. Important roles of tyrosine 9 and aspartic acid 101 in catalysis. J Biol Chem. 1992 Oct 5;267(28):19866–19871. [PubMed] [Google Scholar]
  21. Wang R. W., Newton D. J., Pickett C. B., Lu A. Y. Site-directed mutagenesis of glutathione S-transferase YaYa: functional studies of histidine, cysteine, and tryptophan mutants. Arch Biochem Biophys. 1992 Aug 15;297(1):86–91. doi: 10.1016/0003-9861(92)90644-c. [DOI] [PubMed] [Google Scholar]
  22. Zhang P. H., Armstrong R. N. Construction, expression, and preliminary characterization of chimeric class mu glutathione S-transferases with altered catalytic properties. Biopolymers. 1990 Jan;29(1):159–169. doi: 10.1002/bip.360290121. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES