Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Feb;2(2):183–196. doi: 10.1002/pro.5560020207

Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry.

S A Carr 1, M J Huddleston 1, M F Bean 1
PMCID: PMC2142339  PMID: 7680267

Abstract

A mass spectrometry method has been developed for selective detection of glycopeptides at the low (< or = 25) picomole level during chromatography of glycoprotein digests and for differentiation of O-linked from N-linked oligosaccharides. The technique involves observation of diagnostic sugar oxonium-ion fragments, particularly the HexNAc+ fragment at m/z 204, from collisionally excited glycopeptides. Collision-induced fragmentation can be accomplished in either of two regions of a triple quadrupole mass spectrometer equipped with an atmospheric pressure, electrospray (ES) ionization source. If collisions before the first quadrupole are chosen, it is possible to enhance formation of carbohydrate-related fragment ions without distorting the distribution of peptide and glycopeptide signals by increasing the collisional excitation potential only during that portion of each scan in which the low mass carbohydrate-related ions are being detected. This procedure, requiring only a single quadrupole instrument, identifies putative glycopeptide-containing fractions in the chromatogram but suffers from a lack of specificity in the case of co-eluting peptides. Increased specificity is obtained by selectively detecting only those parent ions that fragment in Q2, the second collision region of the triple quadrupole, to produce an ion at m/z 204 (HexNAc+). Only (M + H)+ ions of glycopeptides are observed in these liquid chromatography-electrospray tandem mass spectrometry (LC-ESMS/MS) "parent-scan" spectra. N-linked carbohydrates are differentiated from O-linked by LC-ESMS/MS analysis of the digested glycoprotein prior to and after selective removal of N-linked carbohydrates by peptide N:glycosidase F. These methods, which constitute the first liquid chromatography-mass spectrometry (LC-MS)-based strategies for selective identification of glycopeptides in complex mixtures, facilitate location and preparative fractionation of glycopeptides for further structural characterization. In addition, these techniques may be used to assess the compositional heterogeneity at specific attachment sites, and to define the sequence context of the attachment site in proteins of known sequence. The strategy is demonstrated for bovine fetuin, a 42-kDa glycoprotein containing three N-linked, and at least three O-linked carbohydrates. Over 90% of the fetuin protein sequence was also corroborated by these LC-ESMS studies.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr J. R., Anumula K. R., Vettese M. B., Taylor P. B., Carr S. A. Structural classification of carbohydrates in glycoproteins by mass spectrometry and high-performance anion-exchange chromatography. Anal Biochem. 1991 Jan;192(1):181–192. doi: 10.1016/0003-2697(91)90204-7. [DOI] [PubMed] [Google Scholar]
  2. Carr S. A., Hemling M. E., Bean M. F., Roberts G. D. Integration of mass spectrometry in analytical biotechnology. Anal Chem. 1991 Dec 15;63(24):2802–2824. doi: 10.1021/ac00024a003. [DOI] [PubMed] [Google Scholar]
  3. Carr S. A., Roberts G. D. Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins. Anal Biochem. 1986 Sep;157(2):396–406. doi: 10.1016/0003-2697(86)90643-3. [DOI] [PubMed] [Google Scholar]
  4. Covey T. R., Bonner R. F., Shushan B. I., Henion J. The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry. Rapid Commun Mass Spectrom. 1988 Nov;2(11):249–256. doi: 10.1002/rcm.1290021111. [DOI] [PubMed] [Google Scholar]
  5. Cumming D. A. Glycosylation of recombinant protein therapeutics: control and functional implications. Glycobiology. 1991 Mar;1(2):115–130. doi: 10.1093/glycob/1.2.115. [DOI] [PubMed] [Google Scholar]
  6. Cumming D. A., Hellerqvist C. G., Harris-Brandts M., Michnick S. W., Carver J. P., Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989 Jul 25;28(15):6500–6512. doi: 10.1021/bi00441a051. [DOI] [PubMed] [Google Scholar]
  7. Dell A. F.A.B.-mass spectrometry of carbohydrates. Adv Carbohydr Chem Biochem. 1987;45:19–72. doi: 10.1016/s0065-2318(08)60136-5. [DOI] [PubMed] [Google Scholar]
  8. Dubé S., Fisher J. W., Powell J. S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem. 1988 Nov 25;263(33):17516–17521. [PubMed] [Google Scholar]
  9. Dziegielewska K. M., Brown W. M., Casey S. J., Christie D. L., Foreman R. C., Hill R. M., Saunders N. R. The complete cDNA and amino acid sequence of bovine fetuin. Its homology with alpha 2HS glycoprotein and relation to other members of the cystatin superfamily. J Biol Chem. 1990 Mar 15;265(8):4354–4357. [PubMed] [Google Scholar]
  10. Edge A. S., Spiro R. G. Presence of an O-glycosidically linked hexasaccharide in fetuin. J Biol Chem. 1987 Nov 25;262(33):16135–16141. [PubMed] [Google Scholar]
  11. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  12. Goochee C. F., Gramer M. J., Andersen D. C., Bahr J. B., Rasmussen J. R. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N Y) 1991 Dec;9(12):1347–1355. doi: 10.1038/nbt1291-1347. [DOI] [PubMed] [Google Scholar]
  13. Green E. D., Adelt G., Baenziger J. U., Wilson S., Van Halbeek H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem. 1988 Dec 5;263(34):18253–18268. [PubMed] [Google Scholar]
  14. Gribben J. G., Devereux S., Thomas N. S., Keim M., Jones H. M., Goldstone A. H., Linch D. C. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet. 1990 Feb 24;335(8687):434–437. doi: 10.1016/0140-6736(90)90665-r. [DOI] [PubMed] [Google Scholar]
  15. Haselbeck A., Schickaneder E., von der Eltz H., Hösel W. Structural characterization of glycoprotein carbohydrate chains by using diagoxigenin-labeled lectins on blots. Anal Biochem. 1990 Nov 15;191(1):25–30. doi: 10.1016/0003-2697(90)90381-i. [DOI] [PubMed] [Google Scholar]
  16. Hemling M. E., Roberts G. D., Johnson W., Carr S. A., Covey T. R. Analysis of proteins and glycoproteins at the picomole level by on-line coupling of microbore high-performance liquid chromatography with flow fast atom bombardment and electrospray mass spectrometry: a comparative evaluation. Biomed Environ Mass Spectrom. 1990 Nov;19(11):677–691. doi: 10.1002/bms.1200191107. [DOI] [PubMed] [Google Scholar]
  17. Hsi K. L., Chen L., Hawke D. H., Zieske L. R., Yuan P. M. A general approach for characterizing glycosylation sites of glycoproteins. Anal Biochem. 1991 Nov 1;198(2):238–245. doi: 10.1016/0003-2697(91)90419-t. [DOI] [PubMed] [Google Scholar]
  18. Kobata A., Endo T. Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides. J Chromatogr. 1992 Apr 24;597(1-2):111–122. doi: 10.1016/0021-9673(92)80101-y. [DOI] [PubMed] [Google Scholar]
  19. Ling V., Guzzetta A. W., Canova-Davis E., Stults J. T., Hancock W. S., Covey T. R., Shushan B. I. Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem. 1991 Dec 15;63(24):2909–2915. doi: 10.1021/ac00024a020. [DOI] [PubMed] [Google Scholar]
  20. Matzuk M. M., Krieger M., Corless C. L., Boime I. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6354–6358. doi: 10.1073/pnas.84.18.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Medzihradszky K. F., Gillece-Castro B. L., Settineri C. A., Townsend R. R., Masiarz F. R., Burlingame A. L. Structure determination of O-linked glycopeptides by tandem mass spectrometry. Biomed Environ Mass Spectrom. 1990 Dec 5;19(12):777–781. doi: 10.1002/bms.1200191205. [DOI] [PubMed] [Google Scholar]
  22. Nilsson B., Nordén N. E., Svensson S. Structural studies on the carbohydrate portion of fetuin. J Biol Chem. 1979 Jun 10;254(11):4545–4553. [PubMed] [Google Scholar]
  23. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  24. Rice K. G., Rao N. B., Lee Y. C. Large-scale preparation and characterization of N-linked glycopeptides from bovine fetuin. Anal Biochem. 1990 Feb 1;184(2):249–258. doi: 10.1016/0003-2697(90)90676-z. [DOI] [PubMed] [Google Scholar]
  25. Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
  26. Takasaki S., Mizuochi T., Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 1982;83:263–268. doi: 10.1016/0076-6879(82)83019-x. [DOI] [PubMed] [Google Scholar]
  27. Townsend R. R., Alai M., Hardy M. R., Fenselau C. C. Assessment of glycosylation-site heterogeneity using plasma desorption mass spectrometry. Anal Biochem. 1988 May 15;171(1):180–191. doi: 10.1016/0003-2697(88)90140-6. [DOI] [PubMed] [Google Scholar]
  28. Yet M. G., Chin C. C., Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem. 1988 Jan 5;263(1):111–117. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES