Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Feb;2(2):206–214. doi: 10.1002/pro.5560020209

Modulation of antibody affinity by a non-contact residue.

J F Schillbach 1, R I Near 1, R E Bruccoleri 1, E Haber 1, P D Jeffrey 1, J Novotny 1, S Sheriff 1, M N Margolies 1
PMCID: PMC2142342  PMID: 8443598

Abstract

Antibody LB4, produced by a spontaneous variant of the murine anti-digoxin monoclonal antibody 26-10, has an affinity for digoxin two orders of magnitude lower than that of the parent antibody due to replacement of serine with phenylalanine at position 52 of the heavy chain variable region (Schildbach, J.F., Panka, D.J., Parks, D.R., et al., 1991, J. Biol. Chem. 266, 4640-4647). To examine the basis for the decreased affinity, a panel of engineered antibodies with substitutions at position 52 was created, and their affinities for digoxin were measured. The antibody affinities decreased concomitantly with increasing size of the substituted side chains, although the shape of the side chains also influenced affinity. The crystal structure of the 26-10 Fab complexed with digoxin (P.D.J., R.K. Strong, L.C. Sieker, C. Chang, R.L. Campbell, G.A. Petsko, E.H., M.N.M., & S.S., submitted for publication) shows that the serine at heavy chain position 52 is not in contact with hapten, but is adjacent to a tyrosine at heavy chain position 33 that is a contact residue. The mutant antibodies were modeled by applying a conformational search procedure to position side chains, using the 26-10 Fab crystal structure as a starting point. The results suggest that each of the substituted side chains may be accommodated within the antibody without substantial structural rearrangement, and that none of these substituted side chains are able to contact hapten. These modeling results are consistent with the substituents at position 52 having only an indirect influence upon antibody affinity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (890.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alzari P. M., Spinelli S., Mariuzza R. A., Boulot G., Poljak R. J., Jarvis J. M., Milstein C. Three-dimensional structure determination of an anti-2-phenyloxazolone antibody: the role of somatic mutation and heavy/light chain pairing in the maturation of an immune response. EMBO J. 1990 Dec;9(12):3807–3814. doi: 10.1002/j.1460-2075.1990.tb07598.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  3. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  4. Chien N. C., Roberts V. A., Giusti A. M., Scharff M. D., Getzoff E. D. Significant structural and functional change of an antigen-binding site by a distant amino acid substitution: proposal of a structural mechanism. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5532–5536. doi: 10.1073/pnas.86.14.5532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chothia C., Lesk A. M., Tramontano A., Levitt M., Smith-Gill S. J., Air G., Sheriff S., Padlan E. A., Davies D., Tulip W. R. Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec 21;342(6252):877–883. doi: 10.1038/342877a0. [DOI] [PubMed] [Google Scholar]
  6. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. He J. J., Quiocho F. A. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. Science. 1991 Mar 22;251(5000):1479–1481. doi: 10.1126/science.1900953. [DOI] [PubMed] [Google Scholar]
  8. Herron J. N., He X. M., Mason M. L., Voss E. W., Jr, Edmundson A. B. Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol. Proteins. 1989;5(4):271–280. doi: 10.1002/prot.340050404. [DOI] [PubMed] [Google Scholar]
  9. Hunter M. M., Margolies M. N., Ju A., Haber E. High-affinity monoclonal antibodies to the cardiac glycoside, digoxin. J Immunol. 1982 Sep;129(3):1165–1172. [PubMed] [Google Scholar]
  10. Jones P. T., Dear P. H., Foote J., Neuberger M. S., Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. 1986 May 29-Jun 4Nature. 321(6069):522–525. doi: 10.1038/321522a0. [DOI] [PubMed] [Google Scholar]
  11. Kettleborough C. A., Saldanha J., Heath V. J., Morrison C. J., Bendig M. M. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng. 1991 Oct;4(7):773–783. doi: 10.1093/protein/4.7.773. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lavoie T. B., Drohan W. N., Smith-Gill S. J. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J Immunol. 1992 Jan 15;148(2):503–513. [PubMed] [Google Scholar]
  14. Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
  15. Munson P. J. LIGAND: a computerized analysis of ligand binding data. Methods Enzymol. 1983;92:543–576. doi: 10.1016/0076-6879(83)92044-x. [DOI] [PubMed] [Google Scholar]
  16. Near R. I., Bruccoleri R., Novotny J., Hudson N. W., White A., Mudgett-Hunter M. The specificity properties that distinguish members of a set of homologous anti-digoxin antibodies are controlled by H chain mutations. J Immunol. 1991 Jan 15;146(2):627–633. [PubMed] [Google Scholar]
  17. Near R. I., Ng S. C., Mudgett-Hunter M., Hudson N. W., Margolies M. N., Seidman J. G., Haber E., Jacobson M. A. Heavy and light chain contributions to antigen binding in an anti-digoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Mol Immunol. 1990 Sep;27(9):901–909. doi: 10.1016/0161-5890(90)90157-u. [DOI] [PubMed] [Google Scholar]
  18. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  19. Padlan E. A., Davies D. R. Variability of three-dimensional structure in immunoglobulins. Proc Natl Acad Sci U S A. 1975 Mar;72(3):819–823. doi: 10.1073/pnas.72.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
  21. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Panka D. J., Mudgett-Hunter M., Parks D. R., Peterson L. L., Herzenberg L. A., Haber E., Margolies M. N. Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proc Natl Acad Sci U S A. 1988 May;85(9):3080–3084. doi: 10.1073/pnas.85.9.3080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riechmann L., Clark M., Waldmann H., Winter G. Reshaping human antibodies for therapy. Nature. 1988 Mar 24;332(6162):323–327. doi: 10.1038/332323a0. [DOI] [PubMed] [Google Scholar]
  24. Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
  25. Schildbach J. F., Panka D. J., Parks D. R., Jager G. C., Novotny J., Herzenberg L. A., Mudgett-Hunter M., Bruccoleri R. E., Haber E., Margolies M. N. Altered hapten recognition by two anti-digoxin hybridoma variants due to variable region point mutations. J Biol Chem. 1991 Mar 5;266(7):4640–4647. [PubMed] [Google Scholar]
  26. Sheriff S., Hendrickson W. A., Smith J. L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J Mol Biol. 1987 Sep 20;197(2):273–296. doi: 10.1016/0022-2836(87)90124-0. [DOI] [PubMed] [Google Scholar]
  27. Shih H. H., Brady J., Karplus M. Structure of proteins with single-site mutations: a minimum perturbation approach. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1697–1700. doi: 10.1073/pnas.82.6.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tempest P. R., Bremner P., Lambert M., Taylor G., Furze J. M., Carr F. J., Harris W. J. Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo. Biotechnology (N Y) 1991 Mar;9(3):266–271. doi: 10.1038/nbt0391-266. [DOI] [PubMed] [Google Scholar]
  29. Verhoeyen M., Milstein C., Winter G. Reshaping human antibodies: grafting an antilysozyme activity. Science. 1988 Mar 25;239(4847):1534–1536. doi: 10.1126/science.2451287. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES