Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Feb;2(2):277–289. doi: 10.1002/pro.5560020216

An automated method for modeling proteins on known templates using distance geometry.

S Srinivasan 1, C J March 1, S Sudarsanam 1
PMCID: PMC2142344  PMID: 8443604

Abstract

We present an automated method incorporated into a software package, FOLDER, to fold a protein sequence on a given three-dimensional (3D) template. Starting with the sequence alignment of a family of homologous proteins, tertiary structures are modeled using the known 3D structure of one member of the family as a template. Homologous interatomic distances from the template are used as constraints. For nonhomologous regions in the model protein, the lower and the upper bounds for the interatomic distances are imposed by steric constraints and the globular dimensions of the template, respectively. Distance geometry is used to embed an ensemble of structures consistent with these distance bounds. Structures are selected from this ensemble based on minimal distance error criteria, after a penalty function optimization step. These structures are then refined using energy optimization methods. The method is tested by simulating the alpha-chain of horse hemoglobin using the alpha-chain of human hemoglobin as the template and by comparing the generated models with the crystal structure of the alpha-chain of horse hemoglobin. We also test the packing efficiency of this method by reconstructing the atomic positions of the interior side chains beyond C beta atoms of a protein domain from a known 3D structure. In both test cases, models retain the template constraints and any additionally imposed constraints while the packing of the interior residues is optimized with no short contacts or bond deformations. To demonstrate the use of this method in simulating structures of proteins with nonhomologous disulfides, we construct a model of murine interleukin (IL)-4 using the NMR structure of human IL-4 as the template. The resulting geometry of the nonhomologous disulfide in the model structure for murine IL-4 is consistent with standard disulfide geometry.

Full Text

The Full Text of this article is available as a PDF (12.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F. Haemopoietic receptors and helical cytokines. Immunol Today. 1990 Oct;11(10):350–354. doi: 10.1016/0167-5699(90)90139-z. [DOI] [PubMed] [Google Scholar]
  2. Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
  3. Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
  4. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  5. Carr C., Aykent S., Kimack N. M., Levine A. D. Disulfide assignments in recombinant mouse and human interleukin 4. Biochemistry. 1991 Feb 12;30(6):1515–1523. doi: 10.1021/bi00220a011. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Lesk A. M. Evolution of proteins formed by beta-sheets. I. Plastocyanin and azurin. J Mol Biol. 1982 Sep 15;160(2):309–323. doi: 10.1016/0022-2836(82)90178-4. [DOI] [PubMed] [Google Scholar]
  7. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Claessens M., Van Cutsem E., Lasters I., Wodak S. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 1989 Jan;2(5):335–345. doi: 10.1093/protein/2.5.335. [DOI] [PubMed] [Google Scholar]
  9. Clore G. M., Appella E., Yamada M., Matsushima K., Gronenborn A. M. Three-dimensional structure of interleukin 8 in solution. Biochemistry. 1990 Feb 20;29(7):1689–1696. doi: 10.1021/bi00459a004. [DOI] [PubMed] [Google Scholar]
  10. Cosman D., Lyman S. D., Idzerda R. L., Beckmann M. P., Park L. S., Goodwin R. G., March C. J. A new cytokine receptor superfamily. Trends Biochem Sci. 1990 Jul;15(7):265–270. doi: 10.1016/0968-0004(90)90051-c. [DOI] [PubMed] [Google Scholar]
  11. Curtis B. M., Presnell S. R., Srinivasan S., Sassenfeld H., Klinke R., Jeffery E., Cosman D., March C. J., Cohen F. E. Experimental and theoretical studies of the three-dimensional structure of human interleukin-4. Proteins. 1991;11(2):111–119. doi: 10.1002/prot.340110204. [DOI] [PubMed] [Google Scholar]
  12. Diederichs K., Boone T., Karplus P. A. Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. Science. 1991 Dec 20;254(5039):1779–1782. doi: 10.1126/science.1837174. [DOI] [PubMed] [Google Scholar]
  13. Fine R. M., Wang H., Shenkin P. S., Yarmush D. L., Levinthal C. Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins. 1986 Dec;1(4):342–362. doi: 10.1002/prot.340010408. [DOI] [PubMed] [Google Scholar]
  14. Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol. 1981 Dec 25;153(4):1027–1042. doi: 10.1016/0022-2836(81)90465-4. [DOI] [PubMed] [Google Scholar]
  15. Havel T. F., Snow M. E. A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol. 1991 Jan 5;217(1):1–7. doi: 10.1016/0022-2836(91)90603-4. [DOI] [PubMed] [Google Scholar]
  16. Holmgren A., Bränden C. I. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature. 1989 Nov 16;342(6247):248–251. doi: 10.1038/342248a0. [DOI] [PubMed] [Google Scholar]
  17. Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
  18. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  19. Powers R., Garrett D. S., March C. J., Frieden E. A., Gronenborn A. M., Clore G. M. Three-dimensional solution structure of human interleukin-4 by multidimensional heteronuclear magnetic resonance spectroscopy. Science. 1992 Jun 19;256(5064):1673–1677. doi: 10.1126/science.256.5064.1673. [DOI] [PubMed] [Google Scholar]
  20. Ryu S. E., Kwong P. D., Truneh A., Porter T. G., Arthos J., Rosenberg M., Dai X. P., Xuong N. H., Axel R., Sweet R. W. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature. 1990 Nov 29;348(6300):419–426. doi: 10.1038/348419a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Snow M. E., Amzel L. M. Calculating three-dimensional changes in protein structure due to amino-acid substitutions: the variable region of immunoglobulins. Proteins. 1986 Nov;1(3):267–279. doi: 10.1002/prot.340010310. [DOI] [PubMed] [Google Scholar]
  22. Sowdhamini R., Srinivasan N., Shoichet B., Santi D. V., Ramakrishnan C., Balaram P. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng. 1989 Nov;3(2):95–103. doi: 10.1093/protein/3.2.95. [DOI] [PubMed] [Google Scholar]
  23. Srinivasan S., Shibata M., Rein R. Multistep modeling of protein structure: application to bungarotoxin. Int J Quantum Chem Quantum Biol Symp. 1986;13:167–174. doi: 10.1002/qua.560300817. [DOI] [PubMed] [Google Scholar]
  24. St Charles R., Walz D. A., Edwards B. F. The three-dimensional structure of bovine platelet factor 4 at 3.0-A resolution. J Biol Chem. 1989 Feb 5;264(4):2092–2099. [PubMed] [Google Scholar]
  25. Sundaram K., Srinivasan T. S. Computer simulated modeling of biomolecular systems. Comput Programs Biomed. 1979 Jul;10(1):29–33. doi: 10.1016/0010-468x(79)90047-3. [DOI] [PubMed] [Google Scholar]
  26. Tramontano A., Chothia C., Lesk A. M. Structural determinants of the conformations of medium-sized loops in proteins. Proteins. 1989;6(4):382–394. doi: 10.1002/prot.340060405. [DOI] [PubMed] [Google Scholar]
  27. de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES