Abstract
The affects of differences in amino acid sequence on the temperature stability of the three-dimensional structure of the small beta-sheet protein, rubredoxin (Rd), was revealed when a set of homology models was subjected to molecular dynamics simulations at relatively high temperatures. Models of Rd from the hyperthermophile, Pyrococcus furiosus (Pf), an organism that grows optimally at 100 degrees C, were compared to three mesophilic Rds of known X-ray crystal structure. Simulations covering the limits of known Rd thermostabilities were carried out at temperatures of 300 K, 343 K, 373 K, and 413 K. They suggest that Rd stability is correlated with structural dynamics. Because the dynamic behavior of three Pf Rd models was consistently different from the dynamic behavior of the three mesophilic Rd structures, detailed analysis of the temperature-dependent dynamic behavior was carried out. The major differences between the models of the protein from the hyperthermophile and the others were: (1) an obvious temperature-dependent transition in the mesophilic structures not seen with the Pf Rd models, (2) consistent AMBER energy for the Pf Rd due to differences in nonbonded interaction terms, (3) less variation in the average conformations for the Pf Rd models with temperature, and (4) the presence of more extensive secondary structure for the Pf Rd models. These unsolvated dynamics simulations support a simple, general hypothesis to explain the hyperthermostability of Pf Rd. Its structure simplifies the conformational space to give a single minimum accessible over an extreme range of temperatures, whereas the mesophilic proteins sample a more complex conformational space with two or more minima over the same temperature range.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi S., Sunohara N., Ishimori K., Morishima I. Structure and ligand binding properties of leucine 29(B10) mutants of human myoglobin. J Biol Chem. 1992 Jun 25;267(18):12614–12621. [PubMed] [Google Scholar]
- Akke M., Forsén S. Protein stability and electrostatic interactions between solvent exposed charged side chains. Proteins. 1990;8(1):23–29. doi: 10.1002/prot.340080106. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blake P. R., Park J. B., Bryant F. O., Aono S., Magnuson J. K., Eccleston E., Howard J. B., Summers M. F., Adams M. W. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry. 1991 Nov 12;30(45):10885–10895. doi: 10.1021/bi00109a012. [DOI] [PubMed] [Google Scholar]
- Blake P. R., Park J. B., Zhou Z. H., Hare D. R., Adams M. W., Summers M. F. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1508–1521. doi: 10.1002/pro.5560011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffey C. Edward, Weiner Richard D., McCall W. Vaughn, Heinz E. Ralph. Electroconvulsive Therapy in Multiple Sclerosis: A Magnetic Resonance Imaging Study of the Brain. Convuls Ther. 1987;3(2):137–144. [PubMed] [Google Scholar]
- Daggett V., Levitt M. Molecular dynamics simulations of helix denaturation. J Mol Biol. 1992 Feb 20;223(4):1121–1138. doi: 10.1016/0022-2836(92)90264-k. [DOI] [PubMed] [Google Scholar]
- Dauter Z., Sieker L. C., Wilson K. S. Refinement of rubredoxin from Desulfovibrio vulgaris at 1.0 A with and without restraints. Acta Crystallogr B. 1992 Feb 1;48(Pt 1):42–59. doi: 10.1107/s0108768191010613. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Badretdinov A. Y., Ptitsyn O. B. Physical reasons for secondary structure stability: alpha-helices in short peptides. Proteins. 1991;10(4):287–299. doi: 10.1002/prot.340100403. [DOI] [PubMed] [Google Scholar]
- Frey M., Sieker L., Payan F., Haser R., Bruschi M., Pepe G., LeGall J. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution. J Mol Biol. 1987 Oct 5;197(3):525–541. doi: 10.1016/0022-2836(87)90562-6. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
- Levitt M., Warshel A. Computer simulation of protein folding. Nature. 1975 Feb 27;253(5494):694–698. doi: 10.1038/253694a0. [DOI] [PubMed] [Google Scholar]
- Lim W. K., Brouillette C., Hardman J. K. Thermal stabilities of mutant Escherichia coli tryptophan synthase alpha subunits. Arch Biochem Biophys. 1992 Jan;292(1):34–41. doi: 10.1016/0003-9861(92)90047-z. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
- Sneddon S. F., Tobias D. J. The role of packing interactions in stabilizing folded proteins. Biochemistry. 1992 Mar 17;31(10):2842–2846. doi: 10.1021/bi00125a028. [DOI] [PubMed] [Google Scholar]
- Stenkamp R. E., Sieker L. C., Jensen L. H. The structure of rubredoxin from Desulfovibrio desulfuricans strain 27774 at 1.5 A resolution. Proteins. 1990;8(4):352–364. doi: 10.1002/prot.340080409. [DOI] [PubMed] [Google Scholar]
- Stewart D. E., Wampler J. E. Molecular dynamics simulations of the cytochrome c3-rubredoxin complex from Desulfovibrio vulgaris. Proteins. 1991;11(2):142–152. doi: 10.1002/prot.340110207. [DOI] [PubMed] [Google Scholar]
- Tidor B., Karplus M. Simulation analysis of the stability mutant R96H of T4 lysozyme. Biochemistry. 1991 Apr 2;30(13):3217–3228. doi: 10.1021/bi00227a009. [DOI] [PubMed] [Google Scholar]
- Tirado-Rives J., Jorgensen W. L. Molecular dynamics simulations of the unfolding of an alpha-helical analogue of ribonuclease A S-peptide in water. Biochemistry. 1991 Apr 23;30(16):3864–3871. doi: 10.1021/bi00230a009. [DOI] [PubMed] [Google Scholar]
- Wampler J. E. Analysis of the probability distribution of small random samples by nonlinear fitting of integrated probabilities. Anal Biochem. 1990 May 1;186(2):209–218. doi: 10.1016/0003-2697(90)90068-k. [DOI] [PubMed] [Google Scholar]
- Wampler J. E., Bradley E. A., Stewart D. E., Adams M. W. Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures. Protein Sci. 1993 Apr;2(4):640–649. doi: 10.1002/pro.5560020414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Levitt M. Folding and stability of helical proteins: carp myogen. J Mol Biol. 1976 Sep 15;106(2):421–437. doi: 10.1016/0022-2836(76)90094-2. [DOI] [PubMed] [Google Scholar]
- Watenpaugh K. D., Sieker L. C., Jensen L. H. Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. J Mol Biol. 1980 Apr 15;138(3):615–633. doi: 10.1016/s0022-2836(80)80020-9. [DOI] [PubMed] [Google Scholar]
- Watenpaugh K. D., Sieker L. C., Jensen L. H. The structure of rubredoxin at 1.2 A resolution. J Mol Biol. 1979 Jul 5;131(3):509–522. doi: 10.1016/0022-2836(79)90005-6. [DOI] [PubMed] [Google Scholar]
- Wendoloski J. J., Matthew J. B., Weber P. C., Salemme F. R. Molecular dynamics of a cytochrome c-cytochrome b5 electron transfer complex. Science. 1987 Nov 6;238(4828):794–797. doi: 10.1126/science.2823387. [DOI] [PubMed] [Google Scholar]
