Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Mar;2(3):404–410. doi: 10.1002/pro.5560020312

Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution.

H LeVine 3rd 1
PMCID: PMC2142377  PMID: 8453378

Abstract

Thioflavine T (ThT) associates rapidly with aggregated fibrils of the synthetic beta/A4-derived peptides beta(1-28) and beta(1-40), giving rise to a new excitation (ex) (absorption) maximum at 450 nm and enhanced emission (em) at 482 nm, as opposed to the 385 nm (ex) and 445 nm (em) of the free dye. This change is dependent on the aggregated state as monomeric or dimeric peptides do not react, and guanidine dissociation of aggregates destroys the signal. There was no effect of high salt concentrations. Binding to the beta(1-40) is of lower affinity, Kd 2 microM, while it saturates with a Kd of 0.54 microM for beta(1-28). Insulin fibrils converted to a beta-sheet conformation fluoresce intensely with ThT. A variety of polyhydroxy, polyanionic, or polycationic materials fail to interact or impede interaction with the amyloid peptides. This fluorometric technique should allow the kinetic elucidation of the amyloid fibril assembly process as well as the testing of agents that might modulate their assembly or disassembly.

Full Text

The Full Text of this article is available as a PDF (605.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burdick D., Soreghan B., Kwon M., Kosmoski J., Knauer M., Henschen A., Yates J., Cotman C., Glabe C. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem. 1992 Jan 5;267(1):546–554. [PubMed] [Google Scholar]
  2. Burke M. J., Rougvie M. A. Cross- protein structures. I. Insulin fibrils. Biochemistry. 1972 Jun 20;11(13):2435–2439. doi: 10.1021/bi00763a008. [DOI] [PubMed] [Google Scholar]
  3. Fraser P. E., Duffy L. K., O'Malley M. B., Nguyen J., Inouye H., Kirschner D. A. Morphology and antibody recognition of synthetic beta-amyloid peptides. J Neurosci Res. 1991 Apr;28(4):474–485. doi: 10.1002/jnr.490280404. [DOI] [PubMed] [Google Scholar]
  4. Glenner G. G., Wong C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984 May 16;120(3):885–890. doi: 10.1016/s0006-291x(84)80190-4. [DOI] [PubMed] [Google Scholar]
  5. Halverson K., Fraser P. E., Kirschner D. A., Lansbury P. T., Jr Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments. Biochemistry. 1990 Mar 20;29(11):2639–2644. doi: 10.1021/bi00463a003. [DOI] [PubMed] [Google Scholar]
  6. Joachim C. L., Selkoe D. J. The seminal role of beta-amyloid in the pathogenesis of Alzheimer disease. Alzheimer Dis Assoc Disord. 1992 Spring;6(1):7–34. doi: 10.1097/00002093-199205000-00003. [DOI] [PubMed] [Google Scholar]
  7. Kelényi G. On the histochemistry of azo group-free thiazole dyes. J Histochem Cytochem. 1967 Mar;15(3):172–180. doi: 10.1177/15.3.172. [DOI] [PubMed] [Google Scholar]
  8. Kirschner D. A., Inouye H., Duffy L. K., Sinclair A., Lind M., Selkoe D. J. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6953–6957. doi: 10.1073/pnas.84.19.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lansbury P. T., Jr In pursuit of the molecular structure of amyloid plaque: new technology provides unexpected and critical information. Biochemistry. 1992 Aug 4;31(30):6865–6870. doi: 10.1021/bi00145a001. [DOI] [PubMed] [Google Scholar]
  10. Masters C. L., Multhaup G., Simms G., Pottgiesser J., Martins R. N., Beyreuther K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 1985 Nov;4(11):2757–2763. doi: 10.1002/j.1460-2075.1985.tb04000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McGeer P. L., McGeer E. G., Kawamata T., Yamada T., Akiyama H. Reactions of the immune system in chronic degenerative neurological diseases. Can J Neurol Sci. 1991 Aug;18(3 Suppl):376–379. doi: 10.1017/s0317167100032479. [DOI] [PubMed] [Google Scholar]
  12. Naiki H., Higuchi K., Hosokawa M., Takeda T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem. 1989 Mar;177(2):244–249. doi: 10.1016/0003-2697(89)90046-8. [DOI] [PubMed] [Google Scholar]
  13. Naiki H., Higuchi K., Matsushima K., Shimada A., Chen W. H., Hosokawa M., Takeda T. Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: use of the fluorescent indicator, thioflavine T. Lab Invest. 1990 Jun;62(6):768–773. [PubMed] [Google Scholar]
  14. Naiki H., Higuchi K., Nakakuki K., Takeda T. Kinetic analysis of amyloid fibril polymerization in vitro. Lab Invest. 1991 Jul;65(1):104–110. [PubMed] [Google Scholar]
  15. Tomski S. J., Murphy R. M. Kinetics of aggregation of synthetic beta-amyloid peptide. Arch Biochem Biophys. 1992 May 1;294(2):630–638. doi: 10.1016/0003-9861(92)90735-f. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES