Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Mar;2(3):325–330. doi: 10.1002/pro.5560020304

Conformational change of chaperone Hsc70 upon binding to a decapeptide: a circular dichroism study.

K Park 1, G C Flynn 1, J E Rothman 1, G D Fasman 1
PMCID: PMC2142380  PMID: 8095833

Abstract

The conformation of bovine Hsc70, a 70-kDa heat shock cognate protein, and its conformational change upon binding to decapeptides, was studied by CD spectroscopy and secondary structure prediction (Chou, P.Y. & Fasman, G.D., 1974, Biochemistry 13, 222-245). The CD spectra were analyzed by the LINCOMB method, as well as by the convex constraint analysis (CCA) method (Perczel, A., Park, K., & Fasman, G.D., 1992, Anal. Biochem. 203, 83-93). The result of the CD analysis of Hsc70 (15% alpha-helix, 24% beta-sheet, 24% beta-turn, and 38% remainder) was very similar to the predicted secondary structure for the beta-sheet (24%) and the beta-turn (29%). However, there is disagreement between the alpha-helical content by CD analysis (15%) and the predicted structure (30%). In spite of the fact that the decapeptides contained a considerable amount of beta-sheet (22%), the interaction of the heat shock protein with the peptide resulted in an overall decrease in the content of beta-sheet conformation (-15%) of the complex. This may be due to induction of a molten globule state. The result of the CCA analysis indicated that the Hsc70 undergoes a conformational change upon binding the decapeptides.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  3. Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
  4. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  6. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  7. Eilers M., Hwang S., Schatz G. Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J. 1988 Apr;7(4):1139–1145. doi: 10.1002/j.1460-2075.1988.tb02923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis R. J. The molecular chaperone concept. Semin Cell Biol. 1990 Feb;1(1):1–9. [PubMed] [Google Scholar]
  9. Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
  10. Flynn G. C., Pohl J., Flocco M. T., Rothman J. E. Peptide-binding specificity of the molecular chaperone BiP. Nature. 1991 Oct 24;353(6346):726–730. doi: 10.1038/353726a0. [DOI] [PubMed] [Google Scholar]
  11. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  12. Hightower L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991 Jul 26;66(2):191–197. doi: 10.1016/0092-8674(91)90611-2. [DOI] [PubMed] [Google Scholar]
  13. Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Landry S. J., Gierasch L. M. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. Biochemistry. 1991 Jul 30;30(30):7359–7362. doi: 10.1021/bi00244a001. [DOI] [PubMed] [Google Scholar]
  16. Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature. 1992 Jan 30;355(6359):455–457. doi: 10.1038/355455a0. [DOI] [PubMed] [Google Scholar]
  17. Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978 Oct 5;275(5679):416–420. doi: 10.1038/275416a0. [DOI] [PubMed] [Google Scholar]
  18. Nilsson B., Anderson S. Proper and improper folding of proteins in the cellular environment. Annu Rev Microbiol. 1991;45:607–635. doi: 10.1146/annurev.mi.45.100191.003135. [DOI] [PubMed] [Google Scholar]
  19. Palleros D. R., Welch W. J., Fink A. L. Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5719–5723. doi: 10.1073/pnas.88.13.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
  21. Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
  22. Perczel A., Park K., Fasman G. D. Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel beta-sheet in proteins. Proteins. 1992 May;13(1):57–69. doi: 10.1002/prot.340130106. [DOI] [PubMed] [Google Scholar]
  23. Ptitsyn O. B. How does protein synthesis give rise to the 3D-structure? FEBS Lett. 1991 Jul 22;285(2):176–181. doi: 10.1016/0014-5793(91)80799-9. [DOI] [PubMed] [Google Scholar]
  24. Ptitsyn O. B. Stadiinyi mekhanizm samoorganizatsii belkovykh molekul. Dokl Akad Nauk SSSR. 1973 Jun 11;210(5):1213–1215. [PubMed] [Google Scholar]
  25. Sadis S., Raghavendra K., Hightower L. E. Secondary structure of the mammalian 70-kilodalton heat shock cognate protein analyzed by circular dichroism spectroscopy and secondary structure prediction. Biochemistry. 1990 Sep 11;29(36):8199–8206. doi: 10.1021/bi00488a001. [DOI] [PubMed] [Google Scholar]
  26. Sorger P. K. Heat shock factor and the heat shock response. Cell. 1991 May 3;65(3):363–366. doi: 10.1016/0092-8674(91)90452-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES