Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Mar;2(3):331–338. doi: 10.1002/pro.5560020305

Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: effects of the solvent dielectric.

T V Brennan 1, S Clarke 1
PMCID: PMC2142383  PMID: 8453372

Abstract

We have investigated the spontaneous degradation of aspartate and asparagine residues via succinimide intermediates in model peptides in organic co-solvents. We find that the rate of deamidation at asparagine residues is markedly reduced in solvents of low dielectric strength. Theoretical considerations suggest that this decrease in rate is due to the destabilization of the deprotonated peptide bond nitrogen anion that is the postulated attacking species in succinimide formation. This result suggests that asparagine residues in regions with low dielectric constants, such as the interior of a protein or in a membrane bilayer, are protected from this type of degradation reaction. On the other hand, we found little or no effect on the rate of succinimide-mediated isomerization of aspartate residues when subjected to the same changes in dielectric constant. In this case, the destabilization of the attacking peptide bond nitrogen anion may be balanced by increased protonation of the aspartyl side chain carboxyl group, a reaction that results in a superior leaving group. Consequently, any protein structure or conformation that would increase the protonation of an aspartate side chain carboxyl group can be expected to render that residue more labile. These results may help explain why particular aspartate residues have been found to degrade in proteins at rates comparable to those of asparagine residues, even though aspartyl-containing peptides degrade more slowly than corresponding asparaginyl-containing peptides in aqueous solutions.

Full Text

The Full Text of this article is available as a PDF (715.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki F., Nakamura H., Nojima N., Tsukumo K., Sakamoto S. Stability of recombinant human epidermal growth factor in various solutions. Chem Pharm Bull (Tokyo) 1989 Feb;37(2):404–406. doi: 10.1248/cpb.37.404. [DOI] [PubMed] [Google Scholar]
  2. Bongers J., Heimer E. P., Lambros T., Pan Y. C., Campbell R. M., Felix A. M. Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor. Int J Pept Protein Res. 1992 Apr;39(4):364–374. doi: 10.1111/j.1399-3011.1992.tb01596.x. [DOI] [PubMed] [Google Scholar]
  3. Capasso S., Mazzarella L., Sica F., Zagari A. Solid-state conformations of aminosuccinyl peptides: crystal structure of tert-butyloxycarbonyl-L-leucyl-L-aminosuccinyl-L-phenylalaninami de. Biopolymers. 1989 Jan;28(1):139–147. doi: 10.1002/bip.360280116. [DOI] [PubMed] [Google Scholar]
  4. Friedman A. R., Ichhpurani A. K., Brown D. M., Hillman R. M., Krabill L. F., Martin R. A., Zurcher-Neely H. A., Guido D. M. Degradation of growth hormone releasing factor analogs in neutral aqueous solution is related to deamidation of asparagine residues. Replacement of asparagine residues by serine stabilizes. Int J Pept Protein Res. 1991 Jan;37(1):14–20. doi: 10.1111/j.1399-3011.1991.tb00727.x. [DOI] [PubMed] [Google Scholar]
  5. Fölsch G. Synthesis of phosphopeptides. V. Further dipeptides, tripeptides and O-phosphorylated derivatives of L-serine. Acta Chem Scand. 1966;20(2):459–473. doi: 10.3891/acta.chem.scand.20-0459. [DOI] [PubMed] [Google Scholar]
  6. Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987 Jan 15;262(2):785–794. [PubMed] [Google Scholar]
  7. George-Nascimento C., Lowenson J., Borissenko M., Calderón M., Medina-Selby A., Kuo J., Clarke S., Randolph A. Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor. Biochemistry. 1990 Oct 16;29(41):9584–9591. doi: 10.1021/bi00493a012. [DOI] [PubMed] [Google Scholar]
  8. Harding J. J. Nonenzymatic covalent posttranslational modification of proteins in vivo. Adv Protein Chem. 1985;37:247–334. doi: 10.1016/s0065-3233(08)60066-2. [DOI] [PubMed] [Google Scholar]
  9. Johnson B. A., Shirokawa J. M., Hancock W. S., Spellman M. W., Basa L. J., Aswad D. W. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. J Biol Chem. 1989 Aug 25;264(24):14262–14271. [PubMed] [Google Scholar]
  10. Kirsch L. E., Molloy R. M., Debono M., Baker P., Farid K. Z. Kinetics of the aspartyl transpeptidation of daptomycin, a novel lipopeptide antibiotic. Pharm Res. 1989 May;6(5):387–393. doi: 10.1023/a:1015927330908. [DOI] [PubMed] [Google Scholar]
  11. Lewis U. J., Cheever E. V., Hopkins W. C. Kinetic study of the deamidation of growth hormone and prolactin. Biochim Biophys Acta. 1970 Sep 29;214(3):498–508. doi: 10.1016/0005-2795(70)90310-7. [DOI] [PubMed] [Google Scholar]
  12. Manning M. C., Patel K., Borchardt R. T. Stability of protein pharmaceuticals. Pharm Res. 1989 Nov;6(11):903–918. doi: 10.1023/a:1015929109894. [DOI] [PubMed] [Google Scholar]
  13. Ondetti M. A., Deer A., Sheehan J. T., Pluscec J., Kocy O. Side reactions in the synthesis of peptides containing the aspartyglycyl sequence. Biochemistry. 1968 Nov;7(11):4069–4075. doi: 10.1021/bi00851a040. [DOI] [PubMed] [Google Scholar]
  14. Ota I. M., Clarke S. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. J Biol Chem. 1989 Jan 5;264(1):54–60. [PubMed] [Google Scholar]
  15. Ota I. M., Ding L., Clarke S. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase. J Biol Chem. 1987 Jun 25;262(18):8522–8531. [PubMed] [Google Scholar]
  16. Patel K., Borchardt R. T. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm Res. 1990 Jul;7(7):703–711. doi: 10.1023/a:1015807303766. [DOI] [PubMed] [Google Scholar]
  17. Pearlman R., Nguyen T. Pharmaceutics of protein drugs. J Pharm Pharmacol. 1992 Feb;44 (Suppl 1):178–185. [PubMed] [Google Scholar]
  18. Piszkiewicz D., Landon M., Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1173–1178. doi: 10.1016/0006-291x(70)90918-6. [DOI] [PubMed] [Google Scholar]
  19. Rees D. C. Experimental evaluation of the effective dielectric constant of proteins. J Mol Biol. 1980 Aug 15;141(3):323–326. doi: 10.1016/0022-2836(80)90184-9. [DOI] [PubMed] [Google Scholar]
  20. Robinson A. B., Rudd C. J. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins. Curr Top Cell Regul. 1974;8(0):247–295. doi: 10.1016/b978-0-12-152808-9.50013-4. [DOI] [PubMed] [Google Scholar]
  21. Stadtman E. R. Covalent modification reactions are marking steps in protein turnover. Biochemistry. 1990 Jul 10;29(27):6323–6331. doi: 10.1021/bi00479a001. [DOI] [PubMed] [Google Scholar]
  22. Wright H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 1991;26(1):1–52. doi: 10.3109/10409239109081719. [DOI] [PubMed] [Google Scholar]
  23. Yüksel K. U., Gracy R. W. In vitro deamidation of human triosephosphate isomerase. Arch Biochem Biophys. 1986 Aug 1;248(2):452–459. doi: 10.1016/0003-9861(86)90498-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES