Abstract
S-peptide (residues 1-20) and S-protein (residues 21-124) are the enzymatically inactive products of the limited digestion of ribonuclease A by subtilisin. S-peptide binds S-protein with high affinity to form ribonuclease S, which has full enzymatic activity. Recombinant DNA technology was used to produce a fusion protein having three parts: carrier, spacer, and target. The two carriers used were the first 15 residues of S-peptide (S15) and a mutant S15 in which Asp 14 had been changed to Asn (D14N S15). The spacer consisted of three proline residues and a four-residue sequence recognized by factor Xa protease. The target was beta-galactosidase. The interaction between the S-peptide portion of the fusion protein and immobilized S-protein allowed for affinity purification of the fusion protein under denaturing (S15 as carrier) or nondenaturing (D14N S15 as carrier) conditions. A sensitive method was developed to detect the fusion protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by its ribonuclease activity following activation with S-protein. S-peptide has distinct advantages over existing carriers in fusion proteins in that it combines a small size (> or = 15 residues), a tunable affinity for ligand (Kd > or = 10(-9) M), and a high sensitivity of detection (> or = 10(-16) mol in a gel).
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
- Filippi B., Moroder L., Borin G., Samartsev M., Marchiori F. Relation between structure and function in some partially synthetic ribonucleases S'. Enzymic and spectroscopic investigation on [Orn10, Asn14]-RNase S' and 1epsilon, 7epsilon, 10delta-triguanidino-[Orn10, Asn14]-RNase S'. Eur J Biochem. 1975 Mar 3;52(1):65–76. doi: 10.1111/j.1432-1033.1975.tb03973.x. [DOI] [PubMed] [Google Scholar]
- Ford C. F., Suominen I., Glatz C. E. Fusion tails for the recovery and purification of recombinant proteins. Protein Expr Purif. 1991 Apr-Jun;2(2-3):95–107. doi: 10.1016/1046-5928(91)90057-p. [DOI] [PubMed] [Google Scholar]
- Ipata P. L., Felicioli R. A. A spectrophotometric assay for ribonuclease activity using cytidylyl-(3',5')-adenosine and uridylyl-(3',5')-adenosine as substrates. FEBS Lett. 1968 Jul;1(1):29–31. doi: 10.1016/0014-5793(68)80010-9. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
- Niu C., Matsuura S., Shindo H., Cohen J. S. Specific peptide-protein interactions in the ribonuclease S' system studied by 13C nuclear magnetic resonance spectroscopy with selectively 13C-enriched peptides. J Biol Chem. 1979 May 25;254(10):3788–3796. [PubMed] [Google Scholar]
- POTTS J. T., Jr, YOUNG D. M., ANFINSEN C. B. Reconstitution of fully active RNase S by carboxypeptidase-degraded RNase S-peptide. J Biol Chem. 1963 Jul;238:2593–2594. [PubMed] [Google Scholar]
- RICHARDS F. M. Titration of amino groups released during the digestion of ribonuclease by subtilisin. C R Trav Lab Carlsberg Chim. 1955;29(17-19):322–328. [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- Schreier A. A., Baldwin R. L. Mechanism of dissociation of S-peptide from ribonuclease S. Biochemistry. 1977 Sep 20;16(19):4203–4209. doi: 10.1021/bi00638a012. [DOI] [PubMed] [Google Scholar]
- Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor H. C., Richardson D. C., Richardson J. S., Wlodawer A., Komoriya A., Chaikes I. M. "Active" conformation of an inactive semi-synthetic ribonuclease-S. J Mol Biol. 1981 Jun 25;149(2):313–317. doi: 10.1016/0022-2836(81)90305-3. [DOI] [PubMed] [Google Scholar]
- Thomas J. M., Hodes M. E. Improved method for ribonuclease zymogram. Anal Biochem. 1981 May 15;113(2):343–351. doi: 10.1016/0003-2697(81)90087-7. [DOI] [PubMed] [Google Scholar]
- Uhlén M., Moks T. Gene fusions for purpose of expression: an introduction. Methods Enzymol. 1990;185:129–143. doi: 10.1016/0076-6879(90)85014-f. [DOI] [PubMed] [Google Scholar]
- Wickner W., Driessen A. J., Hartl F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–124. doi: 10.1146/annurev.bi.60.070191.000533. [DOI] [PubMed] [Google Scholar]
- Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 3.5 A resolution. J Biol Chem. 1967 Sep 10;242(17):3984–3988. [PubMed] [Google Scholar]
- Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Tsernoglou D., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 6 A resolution. J Biol Chem. 1967 Aug 25;242(16):3749–3753. [PubMed] [Google Scholar]