Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Mar;2(3):348–356. doi: 10.1002/pro.5560020307

Ribonuclease S-peptide as a carrier in fusion proteins.

J S Kim 1, R T Raines 1
PMCID: PMC2142386  PMID: 8453373

Abstract

S-peptide (residues 1-20) and S-protein (residues 21-124) are the enzymatically inactive products of the limited digestion of ribonuclease A by subtilisin. S-peptide binds S-protein with high affinity to form ribonuclease S, which has full enzymatic activity. Recombinant DNA technology was used to produce a fusion protein having three parts: carrier, spacer, and target. The two carriers used were the first 15 residues of S-peptide (S15) and a mutant S15 in which Asp 14 had been changed to Asn (D14N S15). The spacer consisted of three proline residues and a four-residue sequence recognized by factor Xa protease. The target was beta-galactosidase. The interaction between the S-peptide portion of the fusion protein and immobilized S-protein allowed for affinity purification of the fusion protein under denaturing (S15 as carrier) or nondenaturing (D14N S15 as carrier) conditions. A sensitive method was developed to detect the fusion protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by its ribonuclease activity following activation with S-protein. S-peptide has distinct advantages over existing carriers in fusion proteins in that it combines a small size (> or = 15 residues), a tunable affinity for ligand (Kd > or = 10(-9) M), and a high sensitivity of detection (> or = 10(-16) mol in a gel).

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
  2. D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
  3. Filippi B., Moroder L., Borin G., Samartsev M., Marchiori F. Relation between structure and function in some partially synthetic ribonucleases S'. Enzymic and spectroscopic investigation on [Orn10, Asn14]-RNase S' and 1epsilon, 7epsilon, 10delta-triguanidino-[Orn10, Asn14]-RNase S'. Eur J Biochem. 1975 Mar 3;52(1):65–76. doi: 10.1111/j.1432-1033.1975.tb03973.x. [DOI] [PubMed] [Google Scholar]
  4. Ford C. F., Suominen I., Glatz C. E. Fusion tails for the recovery and purification of recombinant proteins. Protein Expr Purif. 1991 Apr-Jun;2(2-3):95–107. doi: 10.1016/1046-5928(91)90057-p. [DOI] [PubMed] [Google Scholar]
  5. Ipata P. L., Felicioli R. A. A spectrophotometric assay for ribonuclease activity using cytidylyl-(3',5')-adenosine and uridylyl-(3',5')-adenosine as substrates. FEBS Lett. 1968 Jul;1(1):29–31. doi: 10.1016/0014-5793(68)80010-9. [DOI] [PubMed] [Google Scholar]
  6. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  7. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  8. Niu C., Matsuura S., Shindo H., Cohen J. S. Specific peptide-protein interactions in the ribonuclease S' system studied by 13C nuclear magnetic resonance spectroscopy with selectively 13C-enriched peptides. J Biol Chem. 1979 May 25;254(10):3788–3796. [PubMed] [Google Scholar]
  9. POTTS J. T., Jr, YOUNG D. M., ANFINSEN C. B. Reconstitution of fully active RNase S by carboxypeptidase-degraded RNase S-peptide. J Biol Chem. 1963 Jul;238:2593–2594. [PubMed] [Google Scholar]
  10. RICHARDS F. M. Titration of amino groups released during the digestion of ribonuclease by subtilisin. C R Trav Lab Carlsberg Chim. 1955;29(17-19):322–328. [PubMed] [Google Scholar]
  11. RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
  12. Schreier A. A., Baldwin R. L. Mechanism of dissociation of S-peptide from ribonuclease S. Biochemistry. 1977 Sep 20;16(19):4203–4209. doi: 10.1021/bi00638a012. [DOI] [PubMed] [Google Scholar]
  13. Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Taylor H. C., Richardson D. C., Richardson J. S., Wlodawer A., Komoriya A., Chaikes I. M. "Active" conformation of an inactive semi-synthetic ribonuclease-S. J Mol Biol. 1981 Jun 25;149(2):313–317. doi: 10.1016/0022-2836(81)90305-3. [DOI] [PubMed] [Google Scholar]
  15. Thomas J. M., Hodes M. E. Improved method for ribonuclease zymogram. Anal Biochem. 1981 May 15;113(2):343–351. doi: 10.1016/0003-2697(81)90087-7. [DOI] [PubMed] [Google Scholar]
  16. Uhlén M., Moks T. Gene fusions for purpose of expression: an introduction. Methods Enzymol. 1990;185:129–143. doi: 10.1016/0076-6879(90)85014-f. [DOI] [PubMed] [Google Scholar]
  17. Wickner W., Driessen A. J., Hartl F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–124. doi: 10.1146/annurev.bi.60.070191.000533. [DOI] [PubMed] [Google Scholar]
  18. Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 3.5 A resolution. J Biol Chem. 1967 Sep 10;242(17):3984–3988. [PubMed] [Google Scholar]
  19. Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Tsernoglou D., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 6 A resolution. J Biol Chem. 1967 Aug 25;242(16):3749–3753. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES