Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Mar;2(3):339–347. doi: 10.1002/pro.5560020306

Total synthesis and functional properties of the membrane-intrinsic protein phospholamban.

T Vorherr 1, A Wrzosek 1, M Chiesi 1, E Carafoli 1
PMCID: PMC2142388  PMID: 8384040

Abstract

The membrane-intrinsic protein phospholamban (PLN), the regulatory protein of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, was chemically synthesized. The synthesis was accomplished by double couplings and efficient capping procedures, thus eliminating hydrophobic failure sequences. The crude peptide was purified by high-performance liquid chromatographic ion exchange and gel permeation chromatography in chloroform-methanol mixtures. Ion spray mass spectroscopy showed that the product had the correct molecular mass. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis runs produced the typical monomer-pentamer structural pattern. A predominantly helical CD spectrum was obtained in 0.075% C12E8 (67.9% helix, 1.8% beta, 12.2% turn, 18.1% random coil). Synthetic PLN was phosphorylated in detergent solutions by protein kinase A with a stoichiometry close to 1:1 (Pi to PLN monomer). Reconstitution of the isolated skeletal muscle SR Ca2+ ATPase in phosphatidylcholine membranes in the presence of PLN using the freezing and thawing technique yielded a preparation with lower Ca(2+)-dependent ATPase activity. The inhibition was mainly due to a decrease in the affinity (Km(Ca)) of the ATPase for Ca2+ and was partially reversed by PLN phosphorylation with protein kinase A. By contrast, addition of PLN to diluted intact SR vesicles uncoupled the Ca(2+)-transport reaction, suggesting an ionophoric effect of PLN. Because this effect was observed at very high PLN-to-SR vesicle ratios and was not influenced by PLN phosphorylation, its biological function is doubtful.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyot P., Luu B., Jones L. R., Trifilieff E. Purification of phospholamban from bovine cardiac muscle with organic solvents. Arch Biochem Biophys. 1989 Mar;269(2):639–645. doi: 10.1016/0003-9861(89)90149-5. [DOI] [PubMed] [Google Scholar]
  2. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  3. Chiesi M., Inesi G. The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J Biol Chem. 1979 Oct 25;254(20):10370–10377. [PubMed] [Google Scholar]
  4. Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
  5. Fujii J., Ueno A., Kitano K., Tanaka S., Kadoma M., Tada M. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J Clin Invest. 1987 Jan;79(1):301–304. doi: 10.1172/JCI112799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gasser J. T., Chiesi M. P., Carafoli E. Concerted phosphorylation of the 26-kilodalton phospholamban oligomer and of the low molecular weight phospholamban subunits. Biochemistry. 1986 Nov 18;25(23):7615–7623. doi: 10.1021/bi00371a052. [DOI] [PubMed] [Google Scholar]
  7. Holzenburg A., Engel A., Kessler R., Manz H. J., Lustig A., Aebi U. Rapid isolation of OmpF porin-LPS complexes suitable for structure-function studies. Biochemistry. 1989 May 16;28(10):4187–4193. doi: 10.1021/bi00436a010. [DOI] [PubMed] [Google Scholar]
  8. Hymel L., Fleischer S. Reconstitution of skeletal muscle sarcoplasmic reticulum membranes: strategies for varying the lipid/protein ratio. Methods Enzymol. 1988;157:302–314. doi: 10.1016/0076-6879(88)57085-4. [DOI] [PubMed] [Google Scholar]
  9. Inui M., Chamberlain B. K., Saito A., Fleischer S. The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. J Biol Chem. 1986 Feb 5;261(4):1794–1800. [PubMed] [Google Scholar]
  10. James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989 Nov 2;342(6245):90–92. doi: 10.1038/342090a0. [DOI] [PubMed] [Google Scholar]
  11. Kim H. W., Steenaart N. A., Ferguson D. G., Kranias E. G. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J Biol Chem. 1990 Jan 25;265(3):1702–1709. [PubMed] [Google Scholar]
  12. Kovacs R. J., Nelson M. T., Simmerman H. K., Jones L. R. Phospholamban forms Ca2+-selective channels in lipid bilayers. J Biol Chem. 1988 Dec 5;263(34):18364–18368. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lamers J. M., Stinis J. T. Phosphorylation of low molecular weight proteins in purified preparations of rat heart sarcolemma and sarcoplasmic reticulum. Biochim Biophys Acta. 1980 Aug 21;624(2):443–459. doi: 10.1016/0005-2795(80)90086-0. [DOI] [PubMed] [Google Scholar]
  15. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  16. Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
  17. Le Peuch C. J., Le Peuch D. A., Demaille J. G. Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification. Biochemistry. 1980 Jul 8;19(14):3368–3373. doi: 10.1021/bi00555a042. [DOI] [PubMed] [Google Scholar]
  18. Limas C. J. Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated, phospholipid-dependent protein kinase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1378–1383. doi: 10.1016/0006-291x(80)90103-5. [DOI] [PubMed] [Google Scholar]
  19. Ludwig B., Grabo M., Gregor I., Lustig A., Regenass M., Rosenbusch J. P. Solubilized cytochrome c oxidase from Paracoccus denitrificans is a monomer. J Biol Chem. 1982 May 25;257(10):5576–5578. [PubMed] [Google Scholar]
  20. Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem. 1984 Jul 10;259(13):8029–8032. [PubMed] [Google Scholar]
  21. Ott P., Lustig A., Brodbeck U., Rosenbusch J. P. Acetylcholinesterase from human erythrocytes membranes: dimers as functional units. FEBS Lett. 1982 Feb 22;138(2):187–189. doi: 10.1016/0014-5793(82)80437-7. [DOI] [PubMed] [Google Scholar]
  22. Simmerman H. K., Lovelace D. E., Jones L. R. Secondary structure of detergent-solubilized phospholamban, a phosphorylatable, oligomeric protein of cardiac sarcoplasmic reticulum. Biochim Biophys Acta. 1989 Aug 31;997(3):322–329. doi: 10.1016/0167-4838(89)90203-3. [DOI] [PubMed] [Google Scholar]
  23. Tada M., Kirchberger M. A., Repke D. I., Katz A. M. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1974 Oct 10;249(19):6174–6180. [PubMed] [Google Scholar]
  24. Van Winkle W. B., Pitts B. J., Entman M. L. Rapid purification of canine cardiac sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 1978 Dec 25;253(24):8671–8673. [PubMed] [Google Scholar]
  25. Wegener A. D., Jones L. R. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem. 1984 Feb 10;259(3):1834–1841. [PubMed] [Google Scholar]
  26. Wegener A. D., Simmerman H. K., Liepnieks J., Jones L. R. Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. J Biol Chem. 1986 Apr 15;261(11):5154–5159. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES