Abstract
The crystal structure of calmodulin (CaM; M(r) 16,700, 148 residues) from the ciliated protozoan Paramecium tetraurelia (PCaM) has been determined and refined using 1.8 A resolution area detector data. The crystals are triclinic, space group P1, a = 29.66, b = 53.79, c = 25.49 A, alpha = 92.84, beta = 97.02, and gamma = 88.54 degrees with one molecule in the unit cell. Crystals of the mammalian CaM (MCaM; Babu et al., 1988) and Drosophila CaM (DCaM; Taylor et al., 1991) also belong to the same space group with very similar cell dimensions. All three CaMs have 148 residues, but there are 17 sequence changes between PCaM and MCaM and 16 changes between PCaM and DCaM. The initial difference in the molecular orientation between the PCaM and MCaM crystals was approximately 7 degrees as determined by the rotation function. The reoriented Paramecium model was extensively refitted using omit maps and refined using XPLOR. The R-value for 11,458 reflections with F > 3 sigma is 0.21, and the model consists of protein atoms for residues 4-147, 4 calcium ions, and 71 solvent molecules. The root mean square (rms) deviations in the bond lengths and bond angles in the model from ideal values are 0.016 A and 3 degrees, respectively. The molecular orientation of the final PCaM model differs from MCaM by only 1.7 degrees. The overall Paramecium CaM structure is very similar to the other calmodulin structures with a seven-turn long central helix connecting the two terminal domains, each containing two Ca-binding EF-hand motifs. The rms deviation in the backbone N, Ca, C, and O atoms between PCaM and MCaM is 0.52 A and between PCaM and DCaM is 0.85 A. The long central helix regions differ, where the B-factors are also high, particularly in PCaM and MCaM. Unlike the MCaM structure, with one kink at D80 in the middle of the linker region, and the DCaM structure, with two kinks at K75 and I85, in our PCaM structure there are no kinks in the helix; the distortion appears to be more gradually distributed over the entire helical region, which is bent with an apparent radius of curvature of 74.5(2) A. The different distortions in the central helical region probably arise from its inherent mobility.
Full Text
The Full Text of this article is available as a PDF (1,011.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177–1192. doi: 10.1016/0022-2836(92)90324-d. [DOI] [PubMed] [Google Scholar]
- George S. E., VanBerkum M. F., Ono T., Cook R., Hanley R. M., Putkey J. A., Means A. R. Chimeric calmodulin-cardiac troponin C proteins differentially activate calmodulin target enzymes. J Biol Chem. 1990 Jun 5;265(16):9228–9235. [PubMed] [Google Scholar]
- Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
- Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
- Kink J. A., Maley M. E., Ling K. Y., Kanabrocki J. A., Kung C. Efficient expression of the Paramecium calmodulin gene in Escherichia coli after four TAA-to-CAA changes through a series of polymerase chain reactions. J Protozool. 1991 Sep-Oct;38(5):441–447. doi: 10.1111/j.1550-7408.1991.tb04814.x. [DOI] [PubMed] [Google Scholar]
- Kink J. A., Maley M. E., Preston R. R., Ling K. Y., Wallen-Friedman M. A., Saimi Y., Kung C. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell. 1990 Jul 13;62(1):165–174. doi: 10.1016/0092-8674(90)90250-i. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
- Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
- Kung C., Preston R. R., Maley M. E., Ling K. Y., Kanabrocki J. A., Seavey B. R., Saimi Y. In vivo Paramecium mutants show that calmodulin orchestrates membrane responses to stimuli. Cell Calcium. 1992 Jun-Jul;13(6-7):413–425. doi: 10.1016/0143-4160(92)90054-v. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Means A. R. Molecular mechanisms of action of calmodulin. Recent Prog Horm Res. 1988;44:223–262. doi: 10.1016/b978-0-12-571144-9.50012-0. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. The interaction of calmodulin with fluorescent and photoreactive model peptides: evidence for a short interdomain separation. Proteins. 1989;6(3):284–293. doi: 10.1002/prot.340060311. [DOI] [PubMed] [Google Scholar]
- Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
- Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
- Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
- Schaefer W. H., Lukas T. J., Blair I. A., Schultz J. E., Watterson D. M. Amino acid sequence of a novel calmodulin from Paramecium tetraurelia that contains dimethyllysine in the first domain. J Biol Chem. 1987 Jan 25;262(3):1025–1029. [PubMed] [Google Scholar]
- Swain A. L., Kretsinger R. H., Amma E. L. Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. J Biol Chem. 1989 Oct 5;264(28):16620–16628. [PubMed] [Google Scholar]
- Taylor D. A., Sack J. S., Maune J. F., Beckingham K., Quiocho F. A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. J Biol Chem. 1991 Nov 15;266(32):21375–21380. doi: 10.2210/pdb4cln/pdb. [DOI] [PubMed] [Google Scholar]