Abstract
The effect of decreased protein flexibility on the stability and calcium binding properties of calbindin D9k has been addressed in studies of a disulfide bridged calbindin D9k mutant, denoted (L39C + P43M + I73C), with substitutions Leu 39-->Cys, Ile 73-->Cys, and Pro 43-->Met. Backbone 1H NMR assignments show that the disulfide bond, which forms spontaneously under air oxidation, is well accommodated. The disulfide is inserted on the opposite end of the protein molecule with respect to the calcium sites, to avoid direct interference with these sites, as confirmed by 113Cd NMR. The effect of the disulfide bond on calcium binding was assessed by titrations in the presence of a chromophoric chelator. A small but significant effect on the cooperativity was found, as well as a very modest reduction in calcium affinity. The disulfide bond increases Tm, the transition midpoint of thermal denaturation, of calcium free calbindin D9k from 85 to 95 degrees C and Cm, the urea concentration of half denaturation, from 5.3 to 8.0 M. Calbindins with one covalent bond linking the two EF-hand subdomains are equally stable regardless if the covalent link is the 43-44 peptide bond or the disulfide bond. Kinetic remixing experiments show that separated CNBr fragments of (L39C + P43M + I73C), each comprising one EF-hand, form disulfide linked homodimers. Each homodimer binds two calcium ions with positive co-operativity, and an average affinity of 10(6) M-1. Disulfide linkage dramatically increases the stability of each homodimer. For the homodimer of the C-terminal fragment Tm increases from 59 +/- 2 without covalent linkage to 91 +/- 2 degrees C with disulfide, and Cm from approximately 1.5 to 7.5 M. The overall topology of this homodimer is derived from 1H NMR assignments and a few key NOEs.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akke M., Forsén S., Chazin W. J. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k. J Mol Biol. 1991 Jul 5;220(1):173–189. doi: 10.1016/0022-2836(91)90389-n. [DOI] [PubMed] [Google Scholar]
- Brodin P., Johansson C., Forsén S., Drakenberg T., Grundström T. Functional properties of calbindin D9K mutants with exchanged Ca2+ binding sites. J Biol Chem. 1990 Jul 5;265(19):11125–11130. [PubMed] [Google Scholar]
- Cooper A., Dryden D. T. Allostery without conformational change. A plausible model. Eur Biophys J. 1984;11(2):103–109. doi: 10.1007/BF00276625. [DOI] [PubMed] [Google Scholar]
- Day C., Schwartz B., Li B. L., Pestka S. Engineered disulfide bond greatly increases specific activity of recombinant murine interferon-beta. J Interferon Res. 1992 Apr;12(2):139–143. doi: 10.1089/jir.1992.12.139. [DOI] [PubMed] [Google Scholar]
- Dorrington K. J., Kells D. I., Hitchman A. J., Hartison J. E., Hofmann T. Spectroscopic studies on the binding of divalent cations to porcine intestinal calcium-binding protein. Can J Biochem. 1978 Jun;56(6):492–499. doi: 10.1139/o78-076. [DOI] [PubMed] [Google Scholar]
- Finn B. E., Kördel J., Thulin E., Sellers P., Forsén S. Dissection of calbindin D9k into two Ca(2+)-binding subdomains by a combination of mutagenesis and chemical cleavage. FEBS Lett. 1992 Feb 24;298(2-3):211–214. doi: 10.1016/0014-5793(92)80059-p. [DOI] [PubMed] [Google Scholar]
- Grabarek Z., Tan R. Y., Wang J., Tao T., Gergely J. Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature. 1990 May 10;345(6271):132–135. doi: 10.1038/345132a0. [DOI] [PubMed] [Google Scholar]
- Habuka N., Miyano M., Kataoka J., Tsuge H., Ago H., Noma M. Substantial increase of the inhibitory activity of Mirabilis antiviral protein by an elimination of the disulfide bond with genetic engineering. J Biol Chem. 1991 Dec 15;266(35):23558–23560. [PubMed] [Google Scholar]
- Kahn P. C. The interpretation of near-ultraviolet circular dichroism. Methods Enzymol. 1979;61:339–378. doi: 10.1016/0076-6879(79)61018-2. [DOI] [PubMed] [Google Scholar]
- Kay L. E., Forman-Kay J. D., McCubbin W. D., Kay C. M. Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4323–4333. doi: 10.1021/bi00231a031. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol. 1987;52:499–510. doi: 10.1101/sqb.1987.052.01.057. [DOI] [PubMed] [Google Scholar]
- Kruse N., Lehrnbecher T., Sebald W. Site-directed mutagenesis reveals the importance of disulfide bridges and aromatic residues for structure and proliferative activity of human interleukin-4. FEBS Lett. 1991 Jul 29;286(1-2):58–60. doi: 10.1016/0014-5793(91)80939-z. [DOI] [PubMed] [Google Scholar]
- Leathers V. L., Linse S., Forsén S., Norman A. W. Calbindin-D28K, a 1 alpha,25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. J Biol Chem. 1990 Jun 15;265(17):9838–9841. [PubMed] [Google Scholar]
- Linse S., Johansson C., Brodin P., Grundström T., Drakenberg T., Forsén S. Electrostatic contributions to the binding of Ca2+ in calbindin D9k. Biochemistry. 1991 Jan 8;30(1):154–162. doi: 10.1021/bi00215a023. [DOI] [PubMed] [Google Scholar]
- Linse S., Teleman O., Drakenberg T. Ca2+ binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using 1H NMR. Biochemistry. 1990 Jun 26;29(25):5925–5934. doi: 10.1021/bi00477a007. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Matthews B. W. Stabilization of functional proteins by introduction of multiple disulfide bonds. Methods Enzymol. 1991;202:336–356. doi: 10.1016/0076-6879(91)02018-5. [DOI] [PubMed] [Google Scholar]
- Reid R. E. Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. J Biol Chem. 1990 Apr 15;265(11):5971–5976. [PubMed] [Google Scholar]
- Shaw G. S., Hodges R. S., Sykes B. D. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science. 1990 Jul 20;249(4966):280–283. doi: 10.1126/science.2374927. [DOI] [PubMed] [Google Scholar]
- Skelton N. J., Kördel J., Akke M., Chazin W. J. Nuclear magnetic resonance studies of the internal dynamics in Apo, (Cd2+)1 and (Ca2+)2 calbindin D9k. The rates of amide proton exchange with solvent. J Mol Biol. 1992 Oct 20;227(4):1100–1117. doi: 10.1016/0022-2836(92)90524-n. [DOI] [PubMed] [Google Scholar]
- Skelton N. J., Kördel J., Forsén S., Chazin W. J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9K. J Mol Biol. 1990 Jun 20;213(4):593–598. doi: 10.1016/s0022-2836(05)80244-x. [DOI] [PubMed] [Google Scholar]
- Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
- Tidor B., Karplus M. The contribution of cross-links to protein stability: a normal mode analysis of the configurational entropy of the native state. Proteins. 1993 Jan;15(1):71–79. doi: 10.1002/prot.340150109. [DOI] [PubMed] [Google Scholar]
- Tsuji T., Kaiser E. T. Design and synthesis of the pseudo-EF hand in calbindin D9K: effect of amino acid substitutions in the alpha-helical regions. Proteins. 1991;9(1):12–22. doi: 10.1002/prot.340090103. [DOI] [PubMed] [Google Scholar]
- Wendt B., Hofmann T., Martin S. R., Bayley P., Brodin P., Grundström T., Thulin E., Linse S., Forsén S. Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. Eur J Biochem. 1988 Aug 15;175(3):439–445. doi: 10.1111/j.1432-1033.1988.tb14214.x. [DOI] [PubMed] [Google Scholar]