Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Jun;2(6):1001–1012. doi: 10.1002/pro.5560020613

Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.

V M Powers 1, Y R Yang 1, M J Fogli 1, H K Schachman 1
PMCID: PMC2142411  PMID: 8318885

Abstract

Treatment of the catalytic (C) trimer of Escherichia coli aspartate transcarbamoylase (ATCase) with alpha-chymotrypsin by a procedure similar to that used by Chan and Enns (1978, Can. J. Biochem. 56, 654-658) has been shown to yield an intact, active, proteolytically cleaved trimer containing polypeptide fragments of 26,000 and 8,000 MW. Vmax of the proteolytically cleaved trimer (CPC) is 75% that of the wild-type C trimer, whereas Km for aspartate and Kd for the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, are increased about 7- and 15-fold, respectively. CPC trimer is very stable to heat denaturation as shown by differential scanning microcalorimetry. Amino-terminal sequence analyses as well as results from electrospray ionization mass spectrometry indicate that the limited chymotryptic digestion involves the rupture of only a single peptide bond leading to the production of two fragments corresponding to residues 1-240 and 241-310. This cleavage site involving the bond between Tyr 240 and Ala 241 is in a surface loop known to be involved in intersubunit contacts between the upper and lower C trimers in ATCase when it is in the T conformation. Reconstituted holoenzyme comprising two CPC trimers and three wild-type regulatory (R) dimers was shown by enzyme assays to be devoid of the homotropic and heterotropic allosteric properties characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrate that the holoenzyme reconstituted from CPC trimers is in the R conformation. These results indicate that the intact flexible loop containing Tyr 240 is essential for stabilizing the T conformation of ATCase. Following denaturation of the CPC trimer in 4.7 M urea and dilution of the solution, the separate proteolytic fragments re-associate to form active trimers in about 60% yield. How this refolding of the fragments, docking, and association to form trimers are achieved is not known.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brutlag D., Atkinson M. R., Setlow P., Kornberg A. An active fragment of DNA polymerase produced by proteolytic cleavage. Biochem Biophys Res Commun. 1969 Dec 4;37(6):982–989. doi: 10.1016/0006-291x(69)90228-9. [DOI] [PubMed] [Google Scholar]
  2. Burns D. L., Schachman H. K. Assembly of the catalytic trimers of aspartate transcarbamoylase from folded monomers. J Biol Chem. 1982 Aug 10;257(15):8638–8647. [PubMed] [Google Scholar]
  3. Burns D. L., Schachman H. K. Assembly of the catalytic trimers of aspartate transcarbamoylase from unfolded polypeptide chains. J Biol Chem. 1982 Aug 10;257(15):8648–8654. [PubMed] [Google Scholar]
  4. Chan W. W., Enns C. A. Structure and function of aspartate transcarbamoylase studied using chymotrypsin as a probe. Can J Biochem. 1978 Jun;56(6):654–658. doi: 10.1139/o78-098. [DOI] [PubMed] [Google Scholar]
  5. Crouch T. H., Kupke D. W. Magnetic osmometry: association of two peptic fragments from bovine serum albumin at micromolar concentrations. Biochemistry. 1980 Jan 8;19(1):191–199. doi: 10.1021/bi00542a029. [DOI] [PubMed] [Google Scholar]
  6. Davidson J. N., Rumsby P. C., Tamaren J. Organization of a multifunctional protein in pyrimidine biosynthesis. Analyses of active, tryptic fragments. J Biol Chem. 1981 May 25;256(10):5220–5225. [PubMed] [Google Scholar]
  7. Davies G. E., Vanaman T. C., Stark G. R. Aspartate transcarbamylase. Stereospecific restrictions on the binding site for L-aspartate. J Biol Chem. 1970 Mar 10;245(5):1175–1179. [PubMed] [Google Scholar]
  8. Edge V., Allewell N. M., Sturtevant J. M. Differential scanning calorimetric study of the thermal denaturation of aspartate transcarbamoylase of Escherichia coli. Biochemistry. 1988 Oct 18;27(21):8081–8087. doi: 10.1021/bi00421a017. [DOI] [PubMed] [Google Scholar]
  9. Eisenstein E., Markby D. W., Schachman H. K. Heterotropic effectors promote a global conformational change in aspartate transcarbamoylase. Biochemistry. 1990 Apr 17;29(15):3724–3731. doi: 10.1021/bi00467a019. [DOI] [PubMed] [Google Scholar]
  10. Feldhoff R. C., Peters T., Jr Fragments of bovine serum albumin produced by limited proteolysis. Isolation and characterization of peptic fragments. Biochemistry. 1975 Oct 7;14(20):4508–4514. doi: 10.1021/bi00691a027. [DOI] [PubMed] [Google Scholar]
  11. Fisher A., Taniuchi H. A study of core domains, and the core domain-domain interaction of cytochrome c fragment complex. Arch Biochem Biophys. 1992 Jul;296(1):1–16. doi: 10.1016/0003-9861(92)90538-8. [DOI] [PubMed] [Google Scholar]
  12. Galakatos N. G., Walsh C. T. Specific proteolysis of native alanine racemases from Salmonella typhimurium: identification of the cleavage site and characterization of the clipped two-domain proteins. Biochemistry. 1987 Dec 15;26(25):8475–8480. doi: 10.1021/bi00399a066. [DOI] [PubMed] [Google Scholar]
  13. Gerhart J. C., Holoubek H. The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem. 1967 Jun 25;242(12):2886–2892. [PubMed] [Google Scholar]
  14. Gerhart J. C., Schachman H. K. Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry. 1968 Feb;7(2):538–552. doi: 10.1021/bi00842a600. [DOI] [PubMed] [Google Scholar]
  15. Gouaux J. E., Stevens R. C., Ke H. M., Lipscomb W. N. Crystal structure of the Glu-239----Gln mutant of aspartate carbamoyltransferase at 3.1-A resolution: an intermediate quaternary structure. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8212–8216. doi: 10.1073/pnas.86.21.8212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Howlett G. J., Schachman H. K. Allosteric regulation of aspartate transcarbamoylase. Changes in the sedimentation coefficient promoted by the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. Biochemistry. 1977 Nov 15;16(23):5077–5083. doi: 10.1021/bi00642a021. [DOI] [PubMed] [Google Scholar]
  17. Ikeda R. A., Richardson C. C. Enzymatic properties of a proteolytically nicked RNA polymerase of bacteriophage T7. J Biol Chem. 1987 Mar 15;262(8):3790–3799. [PubMed] [Google Scholar]
  18. JOVIN T., CHRAMBACH A., NAUGHTON M. A. AN APPARATUS FOR PREPARATIVE TEMPERATURE-REGULATED POLYACRYLAMIDE GEL ELECTROPHORESIS. Anal Biochem. 1964 Nov;9:351–369. doi: 10.1016/0003-2697(64)90192-7. [DOI] [PubMed] [Google Scholar]
  19. Ke H. M., Lipscomb W. N., Cho Y. J., Honzatko R. B. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. J Mol Biol. 1988 Dec 5;204(3):725–747. doi: 10.1016/0022-2836(88)90365-8. [DOI] [PubMed] [Google Scholar]
  20. Klenow H., Henningsen I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A. 1970 Jan;65(1):168–175. doi: 10.1073/pnas.65.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Konigsberg W. H., Henderson L. Amino acid sequence of the catalytic subunit of aspartate transcarbamoylase from Escherichia coli. Proc Natl Acad Sci U S A. 1983 May;80(9):2467–2471. doi: 10.1073/pnas.80.9.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lindsay C. D., Pain R. H. Refolding and assembly of penicillin acylase, an enzyme composed of two polypeptide chains that result from proteolytic activation. Biochemistry. 1991 Sep 17;30(37):9034–9040. doi: 10.1021/bi00101a018. [DOI] [PubMed] [Google Scholar]
  24. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  25. McClintock D. K., Markus G. Conformational changes in aspartate transcarbamylase. I. Proteolysis of the intact enzyme. J Biol Chem. 1968 Jun 10;243(11):2855–2862. [PubMed] [Google Scholar]
  26. Middleton S. A., Stebbins J. W., Kantrowitz E. R. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase. Biochemistry. 1989 Feb 21;28(4):1617–1626. doi: 10.1021/bi00430a029. [DOI] [PubMed] [Google Scholar]
  27. Newell J. O., Markby D. W., Schachman H. K. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. J Biol Chem. 1989 Feb 15;264(5):2476–2481. [PubMed] [Google Scholar]
  28. Newell J. O., Schachman H. K. Amino acid substitutions which stabilize aspartate transcarbamoylase in the R state disrupt both homotropic and heterotropic effects. Biophys Chem. 1990 Aug 31;37(1-3):183–196. doi: 10.1016/0301-4622(90)88018-n. [DOI] [PubMed] [Google Scholar]
  29. Opitz U., Rudolph R., Jaenicke R., Ericsson L., Neurath H. Proteolytic dimers of porcine muscle lactate dehydrogenase: characterization, folding, and reconstitution of the truncated and nicked polypeptide chain. Biochemistry. 1987 Mar 10;26(5):1399–1406. doi: 10.1021/bi00379a028. [DOI] [PubMed] [Google Scholar]
  30. Peters T., Jr Serum albumin. Adv Protein Chem. 1985;37:161–245. doi: 10.1016/s0065-3233(08)60065-0. [DOI] [PubMed] [Google Scholar]
  31. Peterson C. B., Schachman H. K. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):458–462. doi: 10.1073/pnas.88.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
  33. Reed R. G., Feldhoff R. C., Peters T., Jr Fragments of bovine serum albumin produced by limited proteolysis: complementary behavior of two large fragments. Biochemistry. 1976 Nov 30;15(24):5394–5398. doi: 10.1021/bi00669a028. [DOI] [PubMed] [Google Scholar]
  34. Richards F. M. ON THE ENZYMIC ACTIVITY OF SUBTILISIN-MODIFIED RIBONUCLEASE. Proc Natl Acad Sci U S A. 1958 Feb;44(2):162–166. doi: 10.1073/pnas.44.2.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schachman H. K., Pauza C. D., Navre M., Karels M. J., Wu L., Yang Y. R. Location of amino acid alterations in mutants of aspartate transcarbamoylase: Structural aspects of interallelic complementation. Proc Natl Acad Sci U S A. 1984 Jan;81(1):115–119. doi: 10.1073/pnas.81.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stebbins J. W., Zhang Y., Kantrowitz E. R. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase. Biochemistry. 1990 Apr 24;29(16):3821–3827. doi: 10.1021/bi00468a003. [DOI] [PubMed] [Google Scholar]
  37. Stevens R. C., Lipscomb W. N. Allosteric control of quaternary states in E. coli aspartate transcarbamylase. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1312–1318. doi: 10.1016/0006-291x(90)90829-c. [DOI] [PubMed] [Google Scholar]
  38. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Taniuchi H., Parr G. R., Juillerat M. A. Complementation in folding and fragment exchange. Methods Enzymol. 1986;131:185–217. doi: 10.1016/0076-6879(86)31042-5. [DOI] [PubMed] [Google Scholar]
  40. Tasayco M. L., Carey J. Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. Science. 1992 Jan 31;255(5044):594–597. doi: 10.1126/science.1736361. [DOI] [PubMed] [Google Scholar]
  41. Vas M., Sinev M. A., Kotova N. V., Semisotnov G. V. Reactivation of 3-phosphoglycerate kinase from its unfolded proteolytic fragments. Eur J Biochem. 1990 May 20;189(3):575–579. doi: 10.1111/j.1432-1033.1990.tb15525.x. [DOI] [PubMed] [Google Scholar]
  42. Yang Y. R., Schachman H. K. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Protein Sci. 1993 Jun;2(6):1013–1023. doi: 10.1002/pro.5560020614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zetina C. R., Goldberg M. E. Reversible unfolding of the beta 2 subunit of Escherichia coli tryptophan synthetase and its proteolytic fragments. J Mol Biol. 1980 Mar 15;137(4):401–414. doi: 10.1016/0022-2836(80)90165-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES