Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Jun;2(6):945–950. doi: 10.1002/pro.5560020608

Energy coupling between DNA binding and subunit association is responsible for the specificity of DNA-Arc interaction.

J L Silva 1, C F Silveira 1
PMCID: PMC2142413  PMID: 8318899

Abstract

The effects of several DNA molecules on the free energy of subunit association of Arc repressor were measured. The association studies under equilibrium conditions were performed by the dissociating perturbation of hydrostatic pressure. The magnitude of stabilization of the subunit interaction was determined by the specificity of the protein-DNA interaction. Operator DNA stabilized the free energy of association by about 2.2 kcal/mol of monomeric unit, whereas poly(dG-dC) stabilized the subunit interaction by only 0.26 kcal. Measurements of the stabilizing free energy at different DNA concentrations revealed a stoichiometry of two dimers per 21 bp for the operator DNA sequence and for the nonspecific DNA poly(dA-dT). However, the maximum stabilization was much larger for operator sequence (delta p = 1,750 bar) as compared for poly(dA-dT) (delta p = 750 bar). The importance of the free-energy linkage for the recognition process was corroborated by its absence in a mutant Arc protein (PL8) that binds to operator and nonspecific DNA sequences with equal, low affinity. We conclude that the coupling accounts for the high specificity of the Arc-operator DNA interaction. We hypothesize a mutual coupling between the protein subunits and the two DNA strands, in which the much higher persistency of the associated form when Arc is bound to operator would stabilize the interactions between the two DNA strands.

Full Text

The Full Text of this article is available as a PDF (609.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
  2. Breg J. N., Boelens R., George A. V., Kaptein R. Sequence-specific 1H NMR assignment and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy. Biochemistry. 1989 Dec 12;28(25):9826–9833. doi: 10.1021/bi00451a042. [DOI] [PubMed] [Google Scholar]
  3. Breg J. N., van Opheusden J. H., Burgering M. J., Boelens R., Kaptein R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature. 1990 Aug 9;346(6284):586–589. doi: 10.1038/346586a0. [DOI] [PubMed] [Google Scholar]
  4. Brennan R. G., Matthews B. W. Structural basis of DNA-protein recognition. Trends Biochem Sci. 1989 Jul;14(7):286–290. doi: 10.1016/0968-0004(89)90066-2. [DOI] [PubMed] [Google Scholar]
  5. Brown B. M., Bowie J. U., Sauer R. T. Arc repressor is tetrameric when bound to operator DNA. Biochemistry. 1990 Dec 25;29(51):11189–11195. doi: 10.1021/bi00503a006. [DOI] [PubMed] [Google Scholar]
  6. Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
  7. Knight K. L., Bowie J. U., Vershon A. K., Kelley R. D., Sauer R. T. The Arc and Mnt repressors. A new class of sequence-specific DNA-binding protein. J Biol Chem. 1989 Mar 5;264(7):3639–3642. [PubMed] [Google Scholar]
  8. Knight K. L., Sauer R. T. Biochemical and genetic analysis of operator contacts made by residues within the beta-sheet DNA binding motif of Mnt repressor. EMBO J. 1992 Jan;11(1):215–223. doi: 10.1002/j.1460-2075.1992.tb05044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  10. Paladini A. A., Jr, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry. 1981 Apr 28;20(9):2587–2593. doi: 10.1021/bi00512a034. [DOI] [PubMed] [Google Scholar]
  11. Phillips S. E., Manfield I., Parsons I., Davidson B. E., Rafferty J. B., Somers W. S., Margarita D., Cohen G. N., Saint-Girons I., Stockley P. G. Cooperative tandem binding of met repressor of Escherichia coli. Nature. 1989 Oct 26;341(6244):711–715. doi: 10.1038/341711a0. [DOI] [PubMed] [Google Scholar]
  12. Rafferty J. B., Somers W. S., Saint-Girons I., Phillips S. E. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature. 1989 Oct 26;341(6244):705–710. doi: 10.1038/341705a0. [DOI] [PubMed] [Google Scholar]
  13. Rawitch A. B., Weber G. The reversible association of lysozyme and thyroglobulin. Cooperative binding by near-neighbor interactions. J Biol Chem. 1972 Feb 10;247(3):680–685. [PubMed] [Google Scholar]
  14. Reinhart G. D., Hartleip S. B., Symcox M. M. Role of coupling entropy in establishing the nature and magnitude of allosteric response. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4032–4036. doi: 10.1073/pnas.86.11.4032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sauer R. T., Krovatin W., DeAnda J., Youderian P., Susskind M. M. Primary structure of the immI immunity region of bacteriophage P22. J Mol Biol. 1983 Aug 25;168(4):699–713. doi: 10.1016/s0022-2836(83)80070-9. [DOI] [PubMed] [Google Scholar]
  16. Schleif R. DNA binding by proteins. Science. 1988 Sep 2;241(4870):1182–1187. doi: 10.1126/science.2842864. [DOI] [PubMed] [Google Scholar]
  17. Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
  18. Silva J. L., Villas-Boas M., Bonafe C. F., Meirelles N. C. Anomalous pressure dissociation of large protein aggregates. Lack of concentration dependence and irreversibility at extreme degrees of dissociation of extracellular hemoglobin. J Biol Chem. 1989 Sep 25;264(27):15863–15868. [PubMed] [Google Scholar]
  19. Susskind M. M. A new gene of bacteriophage P22 which regulates synthesis of antirepressor. J Mol Biol. 1980 Apr 25;138(4):685–713. doi: 10.1016/0022-2836(80)90060-1. [DOI] [PubMed] [Google Scholar]
  20. Vershon A. K., Bowie J. U., Karplus T. M., Sauer R. T. Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding. Proteins. 1986 Dec;1(4):302–311. doi: 10.1002/prot.340010404. [DOI] [PubMed] [Google Scholar]
  21. Vershon A. K., Kelley R. D., Sauer R. T. Sequence-specific binding of arc repressor to DNA. Effects of operator mutations and modifications. J Biol Chem. 1989 Feb 25;264(6):3267–3273. [PubMed] [Google Scholar]
  22. Vershon A. K., Youderian P., Susskind M. M., Sauer R. T. The bacteriophage P22 arc and mnt repressors. Overproduction, purification, and properties. J Biol Chem. 1985 Oct 5;260(22):12124–12129. [PubMed] [Google Scholar]
  23. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  24. Weber G. Energetics of ligand binding to proteins. Adv Protein Chem. 1975;29:1–83. doi: 10.1016/s0065-3233(08)60410-6. [DOI] [PubMed] [Google Scholar]
  25. Weber G. Order of free energy couplings between ligand binding and protein subunit association in hemoglobin. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7098–7102. doi: 10.1073/pnas.81.22.7098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zagorski M. G., Bowie J. U., Vershon A. K., Sauer R. T., Patel D. J. NMR studies of Arc repressor mutants: proton assignments, secondary structure, and long-range contacts for the thermostable proline-8----leucine variant of Arc. Biochemistry. 1989 Dec 12;28(25):9813–9825. doi: 10.1021/bi00451a041. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES