Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Jul;2(7):1136–1146. doi: 10.1002/pro.5560020708

Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate.

H A Schreuder 1, S Knight 1, P M Curmi 1, I Andersson 1, D Cascio 1, R M Sweet 1, C I Brändén 1, D Eisenberg 1
PMCID: PMC2142417  PMID: 8358296

Abstract

The crystal structure of activated tobacco rubisco, complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate (CABP) has been determined by molecular replacement, using the structure of activated spinach rubisco (Knight, S., Andersson, I., & Brändén, C.-I., 1990, J. Mol. Biol. 215, 113-160) as a model. The R-factor after refinement is 21.0% for 57,855 reflections between 9.0 and 2.7 A resolution. The local fourfold axis of the rubisco hexadecamer coincides with a crystallographic twofold axis. The result is that the asymmetric unit of the crystals contains half of the L8S8 complex (molecular mass 280 kDa in the asymmetric unit). The activated form of tobacco rubisco is very similar to the activated form of spinach rubisco. The root mean square difference is 0.4 A for 587 equivalent C alpha atoms. Analysis of mutations between tobacco and spinach rubisco revealed that the vast majority of mutations concerned exposed residues. Only 7 buried residues were found to be mutated versus 54 residues at or near the surface of the protein. The crystal structure suggests that the Cys 247-Cys 247 and Cys 449-Cys 459 pairs are linked via disulfide bridges. This pattern of disulfide links differ from the pattern of disulfide links observed in crystals of unactivated tobacco rubisco (Curmi, P.M.G., et al., 1992, J. Biol. Chem. 267, 16980-16989) and is similar to the pattern observed for activated spinach tobacco.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. S., Eisenberg D., Eiserling F. Ribulose bisphosphate carboxylase: a two-layered, square-shaped molecule of symmetry 422. Science. 1977 Apr 15;196(4287):293–295. doi: 10.1126/science.196.4287.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brändén C. I., Lindqvist Y., Schneider G. Protein engineering of Rubisco. Acta Crystallogr B. 1991 Dec 1;47(Pt 6):824–835. doi: 10.1107/s0108768191007127. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  4. Chapman M. S., Suh S. W., Curmi P. M., Cascio D., Smith W. W., Eisenberg D. S. Tertiary structure of plant RuBisCO: domains and their contacts. Science. 1988 Jul 1;241(4861):71–74. doi: 10.1126/science.3133767. [DOI] [PubMed] [Google Scholar]
  5. Chène P., Day A. G., Fersht A. R. Mutation of asparagine 111 of rubisco from Rhodospirillum rubrum alters the carboxylase/oxygenase specificity. J Mol Biol. 1992 Jun 5;225(3):891–896. doi: 10.1016/0022-2836(92)90408-c. [DOI] [PubMed] [Google Scholar]
  6. Curmi P. M., Cascio D., Sweet R. M., Eisenberg D., Schreuder H. Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-A resolution. J Biol Chem. 1992 Aug 25;267(24):16980–16989. [PubMed] [Google Scholar]
  7. Dao-pin S., Söderlind E., Baase W. A., Wozniak J. A., Sauer U., Matthews B. W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991 Oct 5;221(3):873–887. doi: 10.1016/0022-2836(91)80181-s. [DOI] [PubMed] [Google Scholar]
  8. Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
  10. Hudson G. S., Mahon J. D., Anderson P. A., Gibbs M. J., Badger M. R., Andrews T. J., Whitfeld P. R. Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J Biol Chem. 1990 Jan 15;265(2):808–814. [PubMed] [Google Scholar]
  11. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  12. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  13. Kawashima N., Singh S., Wildman S. G. Reversible cold inactivation and heat reactivation of RuDP carboxylase activity of crystallized tobacco fraction I protein. Biochem Biophys Res Commun. 1971 Feb 19;42(4):664–668. doi: 10.1016/0006-291x(71)90539-0. [DOI] [PubMed] [Google Scholar]
  14. Knight S., Andersson I., Brändén C. I. Reexamination of the Three-Dimensional Structure of the Small Subunit of RuBisCo from Higher Plants. Science. 1989 May 12;244(4905):702–705. doi: 10.1126/science.244.4905.702. [DOI] [PubMed] [Google Scholar]
  15. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  16. Lorimer G. H. Ribulosebisphosphate carboxylase: amino acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry. 1981 Mar 3;20(5):1236–1240. doi: 10.1021/bi00508a028. [DOI] [PubMed] [Google Scholar]
  17. Lundqvist T., Schneider G. Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-A resolution. Biochemistry. 1991 Jan 29;30(4):904–908. doi: 10.1021/bi00218a004. [DOI] [PubMed] [Google Scholar]
  18. Newman J., Gutteridge S. The purification and preliminary X-ray diffraction studies of recombinant Synechococcus ribulose-1,5-bisphosphate carboxylase/oxygenase from Escherichia coli. J Biol Chem. 1990 Sep 5;265(25):15154–15159. [PubMed] [Google Scholar]
  19. Pierce J., Tolbert N. E., Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry. 1980 Mar 4;19(5):934–942. doi: 10.1021/bi00546a018. [DOI] [PubMed] [Google Scholar]
  20. Ranty B., Lorimer G., Gutteridge S. An intra-dimeric crosslink of large subunits of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase is formed by oxidation of cysteine 247. Eur J Biochem. 1991 Sep 1;200(2):353–358. doi: 10.1111/j.1432-1033.1991.tb16192.x. [DOI] [PubMed] [Google Scholar]
  21. Scheibe R., Anderson L. E. Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta. 1981 Jun 12;636(1):58–64. doi: 10.1016/0005-2728(81)90075-x. [DOI] [PubMed] [Google Scholar]
  22. Schneider G., Knight S., Andersson I., Brändén C. I., Lindqvist Y., Lundqvist T. Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit. EMBO J. 1990 Jul;9(7):2045–2050. doi: 10.1002/j.1460-2075.1990.tb07371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suh S. W., Cascio D., Chapman M. S., Eisenberg D. A crystal form of ribulose-1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum in the activated state. J Mol Biol. 1987 Sep 20;197(2):363–365. doi: 10.1016/0022-2836(87)90129-x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES